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SUMMARY

Many practical applications require the simul-
taneous estimation of unknown dynamical parameters
and unknown initial means and covariances from an
ensemble of tests. A recursive algorithm which
asymptoticaily obtains the maximum-1likelihood esti-
mate of both sets of unknown parameters is present-
ed. The computational requirements of the algorithm
are greatly reduced by partitioning the parameter
vector into initial and dynamical parameters and
making use of a sufficient statistic as an intermedi-
ate variahle for the estimation of initial condition
parameters. The resylts are 1llustrated by a
numerical example.

1, INTRODUCTION

The majority of work on system identification
has been concerned with system parameter identifica-
tion from f1ngle sample longitudinal data. Goodrich
and Caines” point out that a large range of identifi-
cation problems require system parameters to be
identified from cross-sectional nonstationary data.
One such example, which motivates the work reported
here, arises when one has a time-varying linear
system with unknown constant parameters in the dyname
ics (so=called Markov parameters) and Gaussian dis-
tributed initial conditions with unknown mean and
covariance. The presence of initial conditions
usually guarantees non-stattionary data even in the
case of a time-invariant system and the estimation of
the initial mean and covariance is impossible if one
does)not have multiple tests (i.e. cross-sectional
data).

An obvious way to compute the parameter esti-
mates from cross-sectional nonestationary data is via
maximum likelihood or, more generally, some other
prediction-error scheme‘ where these are batch
approaches. [t is desirable to replace the batch
algorithms by a recursive algorithm to reduce data
storage, make it possible to respond before ail tests
are compieted, and reduce the amount of computation.
0f course, the batch scheme will generally be more
accurate for finite amounts of data. It will be
shown using ideas from Ljung® that, in the limit as
the number of tests tends to infinity, the parameter
estimate computed via our doubly recursive algorithm
equals the batch ML estimate.

For many problems the computational burden
assoctated with estimating an initial covariance
matrix of realistic dimension can he impractical.
This occurs because a Kaiman filter must be differen-
tiated for each element of the covariance matrix. An
approach is presented here that avoids dffferentia-
tion of Kalman filters with respect to inftial mean
and covartiance parameters through the use of a suffi-
cient statistic motivated by the approach in *»
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The paper is organized as follows. The system
model is described in Section 2. Section 3 describes
an aigorithm which is recursive from test to test but
which requires a batch computation for each test. In
Section 4, this batch computation is replaced by a
partitioned recursion within each test that greatly
reduces the necessary computations., Section 5 con-
tains a numericai example., Finally, Section 6 gives
some conciusions and suggestions for further
research.

2. SYSTEM MODEL

Consider a system model of the form

o) = ale) xfe) «w' ) 5 w0020y ()
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Here, wi(t) R xj(t) are "white" and are independent

of each other and of Lj(O) . The subscript 9
indicates dependence on an unknown vector of
parameters & c¢ 0 . The superscript i denotes the
ith gest,

There are several points that should he
emphasized in connection with the model. First, the

time dependence of gg(t) can be the result of a

feedback controi system, bossibly including a Kalman
filter, being applied to the basic dynamical system.
Since one might change the feedback control gains as

a result of eariier test, A;(t) can vary with i
(as denoted by the superscript i ).

3. TEST-TO-TEST RECURSIVE ALGORITHM

The basic problem is to find E*L , the maxtimuym-

i
1ikelihood estimate of 8 , given the data y (t)
for t=l,...,n; and i=1,25...,M. Ry definition,



= arg min L(3,Y) (3)
3

2w,

where L(3,Y) denotes the negative log likelihood

and Y denotes the collection of *(t) for
t=l 2.....n‘ and i21,2,c004M . course, under

the assumptions we have made Y s Gaussian distrih-

uted with some mean and variance which depend on 8.
The f1rst step is to concatenate the data

vectors L (t) for the ith test to form a giant

vector y(i) = [.L ', Li(Z)T ceens y_{("i)T]T
Then
y(i) = (n) + v(1) 121,2,.00,M (4)
where H is a giant matrix concatenated from the
(t) and (t) » ¥(i) - N(O,R ) , and &9 is a

g1ant matr1x concatenated from A (¢) , __)(t) , —e(t)
and (t)

For independent tests we can write Eq. (3) in
the form

. M
-

1
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and
ssanlg, uJ,T o &l a cov(y(t) 7
20 = E((1) = Ay uy ()

All of the expectatfons and covariances in Egs. (7)
and (8) are evaluated as functions of 8 , as if @

were known, Thus, the actual caiculation of -§ML via
Eq. (3) or (5) is stil! fundamentaily a batch calgu-
latton, However, Egqs. (5) through (8) express EﬂL

in terms of the so-called prediction error and Ljum;J
has given a technique for converting a batch predic-
tion error estimator to a recursive estimator whose
estimate converges to the batch estimate as the
amount of data goes to infinity.

Ljung's procedure amounts to writing

oy - ) ds .
3(i) = 2(i-1) «+ v(1) R (F) T- = |. (9
8 18(i-1),2(i) !
2
R(1) = R(1=1) - v(i) {[—‘1 !
82)5(1-1),5(1)
+ 81 - R(1-1)} (10)
where
8(i) is the estimate of 9 based on data Y,
v{(i) = 1/1 aithough more generai forms are
possibie
(1) = y(1) - E{y(1)|&(1-1)} (11)
5 is a smail positive number that is large
enough to ensure R(1) > 0 for all i
and
2(9,e(i)) = L te rSi-le(f) eT(i)]
- ] — - - !
+ % log det _S_; (12)

L.jun'n;J proves, under some assumptions we will

discuss below; that &(1) converges w.p.l either to
the set

d
{Q‘EWQ o} (13)
where, it can be shown that

T(e) = lim L (e,Y 14
() H: (8.Yy) (14)

or to the boundary of the model set as fj+= |
Actually convergence is proven for a class of
positive semi-definite approximations to

d
2

ajla

Furthermore, among isolated points of nc’ only local
minima of V(g) are possibie convergence points.
Note that éji) really converges to a locai minimum
of the negative log likeifhood or to a vaiue on the

boundary of the admissible parameter set., However,
this is all any batch algorithm achieves,

This convergence resuit is based on three
assumptions:

Al: V(g) = 1im E{L(8,Y 15
n:{ S (15)



A2: y(i|Y, ,) is computed via equations of the form

2(1+1) = F(3) (1) « Blg) y(1) (16)
P(HY2p) = H(8) 2(1) + Hla) (17)

F(s) nas all its eigenvalues strictly inside

the unit circle and F(8) , G(8) and H(8) are
twice differentiable Tor all™ 3 in the compact
set of possible parameter values. Not that the
second term on the right hand side of Eq. (17)
is not included in Ljung's version. The extra
term is needed to handle unknown initiai condi-
tions. The proof of convergence is straight-
forward.,

A3: The test procedure that actually generates the
data is "exponentially stable". That is, the
influence of any test on future tests decreases
axponentially.

Assumption (Al) is proven by expanding (15) to

".
T) ~ 1im X T E(els,e(i))} (18)
Mow M 4al

where expectation is with respect to the true S and
e(1) is calcuiated using some other 3 . So,

N i fyal of
I [log det s, + tr [(S,) 1,(2)]]

tal
(19)

1

where P;(g) = true covariance of c(i) . In order

for the 1imit on the right-hand side of the above
aquation to exist we have to impose some condition on
the way tests can vary. A sufficient condition is
for the change in conditions from test to test to go
to zero as is.= , [f this condition is satisfied
then

1 1 -1
V(e) 3 log det S, sotr (55 2.(8)) (20)

[t is trivial to show that the remaintng assump-
tions are satisfied when the tests are independent
F(8) = 0, H(9) -ﬂ_; +» G(8) = 0) . when tests are

coupled via some dependence of test conditions on
previoys tests then the assumptions impose conditions
c(m 1):he form of coupling., The key is Egs. (16) and
17).

4, CALCULATION OF QUANTITIES FOR INDIVIDUAL TESTS

{n general, even for independent tests, the
measurements within a test will be highly correlat-
ed, Hence, the computation of

de(e,e(1))
a

and of

dzz('),e(i))
de?

is potentially very burdensome. The balance of this
section describes the reduction of the computational
requirements to a reasonable level.

There are two well known simplifications.
First, write ¢ in terms of the innovations process
within a single test, That is
i

1

n ; -1
dge() = 2 T (70 8 () 5500

k

+ log det A (k)} (21)

where
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and
8i(k) = € Lol (k) wiT()} (23)

The calculation of %"a. is straightforward and

gives (suppressing the test index 1 and the depend-
ence on 8 )

n
aleelt) o o (T 87 22 )
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%
Second, approximate ——— by
q-Z
2 n
30930, k2] 2 = 10 — 36,
s tr [R7H(K) 3plk) EV_Tﬂ]} (25)
19m 38,



Note that the calculations required in fq. (24)
require that one construct and run a Kalman filter to
give 8(k) and u(k) . Then, these equations must
he differentiated with respect to 3 to give differ-
ence equations which must be sequentially solved to
give

38 (k) and Y
35m 3

;k) for each m .,

The computational burden of these operations can be
considerable.

A major reduction in computations is achieved by
avoiding differentiation of Kalman filters with
respect to the elements of o and L. For convene
ience of presentation, it is assumed here that the

parameters to be estimated are the elements of u. =+ u

and L along wrth the parameters in 5;(:) .
_)(t) '-e(t) and (t) The u,. parameters
are contained in the vector 3 and the remaining
parameters are denoted by a so 3 = CET. gT]

The u,- derivatives are avoided by expressing
the 1ikelthood in terms af the per-test maximum-
likelthood estimate of x'(0) denoted by b' . This
can be done because b1 s f = l,.00,M is a suffi.
cient statistic for T as shown in references 4 and
50

In terms of the sufficient statistic the nega-
tive log 1ikelihood can be written as

- log p(y(1)|w.z)

= -;- {log det (g + P(1))

e - @erant 6 - w] s T (26)

where T(a) is independent of the initial-conditton
parameter 3 and where P(1) fis the error covarti-

ance for b The perstast sstimate b and 1ts
covariance can be obtained from the Xalman filter
used to provide the fnnovations in (21). This is
" accomplished by augmenting the filter to provide a

smoothed estimate of the initial condition 3}(0)

and the estimate-error covariance P (n) and then
removing the u,- prior according To

p(1y = (')t - oht (27)

' p(n) (gf<0) Yoy -ty (28)

Note that in practice Les often are to be estimated
only on a subset of states of x!' that are not

driven by process noise where the mean and covariance
on the remaining states are either known or functions
of a . The above results easily generalize to this
case and the filter need not be augmented because
states not driven by process noise are not
smoothable,

’.
-

Now the derivatives of the negative log likeli-
hood with respect to u,Z are straightforward to
compute from (256) and do not involve differentiation
nf a Kalman filter. I[f there are many UL param-
eters, particularly off diagonal alements of A
this provides an enormous computational savings. The
Fisher information reiatfve to u,Z can be used to
approximate the Hessian of 2(3,z(7))

3y du

3zz(e.c(1)) . 0
3ug AT 0

for all j, m, n (30)

921(9.5(1))

3£mn azpq

-1 -1
= Con Cpq (L2 + 207 Lz +20m7 @)
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where C is i for m=n and 1l for m>n .,
mn 2

The approximate Hessfan relative to a Is still
provided by squation (25), which requires a standard
Kaiman fiiter and its derivatives relative to g .
If the cross terms in the Hessian between u,l “and

a 4are set to zero, then the convergence of &(1)
Tollows from the type of results given in Section 3.
Thus, the algorithm is a complete recursive algorithm
gquaranteed asymptoticaily to perform as well as batch
maximum |fkelihocod. Further, derivatives of the
Xalman filter with respect to u,c have been com-
pletely eliminated.

5. NUMERICAL EXAMPLE

As an example we have considered the simple
second-arder system

x(8) = xp(t) (32)
xp(e) =2l (e) +a'(e) (33)

where xi(t) is a known deterministic input and n(t)
is stationary, colored, Zero-mean Gaussian noise
which is given by

) = 2a'(e) +Wl(e)

with wi(t) a zero-mean white Gaussian process with
power spectral density q . The initfaleconditions
x{(o) . x;(o) are assumed to uncorrelated and

X{(O) - N(Ulo 211) X;(O) - N(Uzp :zz) (34)



The system was subjected to uncorrelated measurements
of the form

(k) = x{(k) v (k) (35)

with

k) < nqo, Lo02s) (36)

The estimated parameters are

. T . T
3 = Eul' “11° Uzr Zzz] » a [q ’ T] (37)

Table 1 gives the results for the estimation process
comparing the recursive aigorithm develioped here with
batch maximum likelihood estimation. Twenty tests
were processed each having 200 measurements 1 sec.
apart. [n order to start the recursive algorithm it
was initialized with the batch result for the first
five tests.

The results are seen to be in good agreement.
As expected two-thirds of the results fall inside the
l=g error bracket calculated from the Fisher informa-
tion matrix,

Parameter{True |Starting Batch Recursive
Value | Valye Estimate Estimate
uy 1.0 0. 1,27 = .,20 | 1.35
I 1.0 0.5 J7 £ 26 84
up 5 0. A4 = 16 .50
L2 .25 0.5 43 £ 15 .49
1/ .05 .08 054 + ,00S{ .052
q .025 .04 .0252 = 001 .02%2
Table 1

Parameter Estimates for Twenty Tests

6. CONCLUSIONS

We have exhibited a partitioned recursive algo-
rithm for calculating the maximum likeiihood estimate
of the unknowns 3 . We have proven that the recur-
sion converges to the same estimates as the batch
maximum 1ikelihood approach when the number of tests
tends to « , The partitioning of the parameters
into initial condition and dynamic parameters pro-
vides a cructal improvement in numerical properties.

Several areas of further research are believed
to be important, Mamy of the potential applications
of these ideas invalve nonlinear systems, Since the
results presented here rely primarily on derivatives
of the log likelihood there is hope that they could
be extended to apply to reasonable classes of none
linear systems. Also, it would be very useful to
have estimates of how the rate of convergence depends

on the scheme for finding R(i). Another practical
problem arises from the fact that tests can he cor-
related due, for example, to common test instrumenta-
tion, Further, it would be desirable to obtain the

per-test maximum [ikeiihood estimates b directly
rather than fom an augmented state smoother.
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