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Efficient Algorithms for Spin-Axis
Attitude Estimation’

Maicoim D. Shuster’

Abstract

Computationaily erficient aigorithms are presented for determimng spin-axis attitude from the
measurement of arc lengths and dihedral angies. The dependence of these aigonthms on the
solution of trigonometric equations has been much reduced. Both single-time and batch esii-
mators are presented along with the covarniance analysis of each algortthm.

Introduction

Since nearly every spacecratt is spinning during part of its life — in particuiar. at the
time of orbit injection — spin-axis attitude estimation Is an umportant segment of almost
every mission support operation. Indeed. for spin-stabilized spacecratt there 1s often no
need (or desire) to determine the compiete three-axis attitude at every point and. in fact.
when accuracy requirements for the spin-axis attitude dictate that many measurements
taken at different times be processed simuitaneously. the computauon of a three-axis
attitude may not even be possibie.

Very often, three-axis attitude information is definitive data required chietly by
mission scientists and generaily processed anyume trom severai days to several months
after the receipt of teiemewy. The need for etficient three-axis actitude estimation
algorithms in those cases is determined by the definitive data rate. When three-axis
atitude information is required in reai-time for the purpose of attitude control. .this is
usually provided on-board by three-axis gyros (e.g.. Solar Maximum Mission) or on
the ground by the spin axis and a third angie. which can be obtained by monitoring
some other seasor reading such as [R scanner pitch (e.g.. Applications Expiorer
Mission, Magsat). :

Spin-axis actitudes, by contrast. are usually required not only as definitive data. but
also by the ground support system in near reai-time for the purpose of monitoring
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spacecraft pertormance and determining large scale atutude maneuvers. Thus. the
efficiency of a spin-axis attitude esumation algorithm becomes a factor in the satety and
daily operation of the spacecraft.

While a number of highiv-efficient algonthms exist for three-uxis attitude
estimation { 1], the computation of spin-axis attitude {1] is. by companson. very clumsy.
This is largely because the computation of three-axis aturude uses compiete vector
measurements. in general. and can take advantage of the linear properties ot Euciidean
three-space. The computation of spin-axis attitude. on the other hand. must rely on
incomplete vector intformation (the measurement of arc lengths and dihedral angtes) to
determine a quantity (the spin axis atttude) which is restricted to the surtace ot
sphere. Thus. while three-axis attitude computations need onfy execute simpie matrix
operations, the computation of spin-axis attitude 1s beset with the burden of solving
complex relatons from spherical trigonometry.

Since spin-axis attitude is usuaily not computed frequently, the need for efficient
aigorithms is not immediate, at [east not for ground support systems. The determination
of the spin-axis attitude from batch measurements of arc lengths and dihedrat angies has
become highly standardized and reiiabie (3], and there is no obvious need to repiace
this software in normal ground support operations.

The need for more efficient algorithms lies in two areas: () the eventual impie-
mentation of spin-axis artitude computation in onboard microprocessor-based attitude
determination systems; and 2) the computation of spin-axis attitude accuracies. which
imposes a far greater computational burden than compuung just the attitude. due to the
greater number of terms and because the computation of the actitude covanance in-
volves implicidy the computaton of derivatives of the attitude.

The iarge computational burden imposed by the need to soive sphencai trigonometric
equations in the computation of spin-axis attitude covariances is evident in the work of
Wertz and Chen (2.4-6], the most compiete and carefui work to date. The difficuities
which are encountered in this approach are of two kinds: |) the compiexity of the
trigonometric relations themselves, and 2) the fact that for certain cases the representa-
ton of the quantities being calcuiated becomes indeterminate while the quantities
themseives are weil defined. This last difficuity is simply a manifestanion of the fact thac
the representation of rotations by Euier angies is sometimes ambiguous and is overcome
in the same way, namely, by changing the representation.

The need for computing spin-axis attitude covariance matrices is two-foid. Firstly,
it is necessary 10 be abie 1o assess the accuracy of a spin-axis attitude computation
during the spacecraft mission. Secondly, it is important to be abie to predict spin-axis
amitude accuracies for mission pianning, particuiarly in the determination of launch
windows. For an exampie of launch window computations using the geometrical
approach see Chen (7].

The purpose of the present work is to deveiop aigorithms for computing spin-axis
amitude and the associated covariance matrix without refying as heaviiy as do current
methods on the soiution of trigonometric equations. A compieteiy vectorial approach
is, of course. not possibie owing to the nawre of the measurements themseives.
However. in large degree many of the wigonometric equations can be abandoned with
the resuit that the spin-axis attitude and. particuiarly, the covariance matrix can be
computed more efficiently.
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The types of measurements studied here are ot two kinds:

measurements of arc length, which wiil always be the angie between the observed
direction and the spin axis.

measurements of a dihedral angle. i.¢., the angle between two pianes. where the line
of intersection is assumed to be the spin axis (8].

Dihedral angles. in general. are measured by observing two crossing times in the
spacecraft and muitiplying by the angular veioctty. Arc lengths may be measured
in a variety of ways; for example. by direct sighting (as of the Sun or a star) or by
measuring the component of a vector along the spin axs (e.g.. the magnetc fieid
vector). The measurement of the nadir angle is hybrid in that an arc length (the nadir
angie) is determined from the measurement of a dihedral angie (the Earth width). [t
is the measurement of the nadir angle which is the source of most of the computa-
tional complexicy.

Esumation algorithms may be classified either as determimisuc (usually single-
frame, i.¢.. single-time) aigorithms. in which a minimai subset ot the available data 1s
chosen to compute the spin-axis attitude, or as optimal {batch) algorithms. in which a
larger quanuty of data is used from which one computes a “best” resuit. Three cases
are treated in this report:

1) A determinisuc esumator using two arc-iength measurements.

2) A determnistic estimator using the measurements of two arc lengths and the
inciuded dihedral angle. (Since in this case the spin-axis attitude is over-
determined. the quesuen of opumality is also discussed.)

J) An opumai batch estumator utilizing any number of measurements of dihedral
angles and arc lengths.

In each-case the covaniance anaiysis is presented in detail.

In the appendix the measurement of the nadir angie is presented. It is at this pomt
that trigonometric reiations cannot be avoided. at least insotar as measuring instruments
(horizon scanners) are presently constructed. The treatment is semular to that of Wertz
and his coilaborators [2]. but a method is given tor avoiding sign ambiguiies and a
significant amount of computation has been eliminated.

The treatment of singie-axis attitude estimation presented here compiements that of
Wertz. The advantage of Wertz's treatment is that the vaniances ajong two great circles
of the celesnal sphere intersecting at the direction of the spin axis and the dihedral angle
between these two circles (the correlaton angle) is given fairly directly. Much [ess
direct is determining the covariance of the spin-axis vector in inernal space. This part
of the calculation falls out simply in the present formalism.

The results presented here are quite simple although they do not seem to be generally
known. An importaat resuit. which is demonswated here, s that little accuracy s lost
by reiaxing the constraint in the opumization that the spin-axis vector be a unit vector
and then unitizing post hoc. This is responsibie for a great deai of simpiification of the
methods presented here. especially for batch estimation.
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Single-Frame Spin-Axis Estimation from
the Measurement of Two Arc Lengths

Consider the simpiest case in which the measured quantities are 3. the Sun angfe (the
angle between the spin axis and the Sun vector), and 7, the nadir angle (the direction
between the spin axis and the nadir vector). The case where one of these measurements
is rcpla.ccd. by the magnetic field angie is analogous.

Let S. E. and i be unit vectors in the Sun. nadir. and spin-axis direcuons. re-
spectively. Then

]

S-a
E-a

cos 3 = ¢ (la)

cos T = g (1b)

The direction of the spin-axis can then be determined simpiy by using a method that
has been pubiished recentiy by Grubin [9], though it has been in popuiar use for ac least
a decade previous.

I[f S and E are not parailel, then it is ailways possibie to write

a= a;S + GEE + av(s X E) (2)

The problem is now to determine the coetficients as, ac. aw.
From equations (1} and the normalization condition we have

c5=l'l's=a,+ag(s'l::) {3a)
ce=0"E=a(S-E) + a " ' (3b)
I =n-n=a+ai+ 208 E) + aii§ x EP (3¢)
which have the soiuton
as = (§ x EI"[cs - celS - EN] (4a)
ag = |S x E"ce = co(S * E)] (4b)
ay = =8 X E|"YS x E} = [ = 2c5celS * E) + i]}'* (4c)
Note that there are two possible solutions for f. These are shown geometncally
in Fig. L.
[t will be convenient to define the following quantities
3= {a’] ¢ = [C’} (5)
ac Ce .
Umi$x B L SeE (6)
E_§ - N -
A -§-0 1

where the tilde below the letter denotes a two-dimensional vector or a 2 X 21 martnx.
Equations (4) can now be wntten
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FIG. 1. Spin-Axis Amitude from Two Arc-Length Measurements.

Ue (7a)

=S x EI{t - dye]” (7o)

3

aw

The covariance analysis is now straightforward. Define the three-vector

Then the covariance matrix of the measurements is given by
P. = (5¢dc) (9)

where the bracket denotes the expectation vaiue and 8¢ is the error in ¢. The covariance
magix of the spin-axis direction in the non-orthogonal coordinate svstem is

P, m (5ada’) {10y
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and in an orthogonal coordinate system
P = (5idi") (D

Substitution of (7) in (10) gives readily

p, = [.:;{.r :.] (12)
with
M = (5ada”) = UP UT (13a)
YV =Mb (13b)
S =bMb (13¢)
b= -{§ x Elfas] ¢ (13d)
The orthogonal representation of the covarance matnx is then obtained as
p=TPT (14)
with
T={S' £ SxE] (15)

where the right member of (13) denotes a matrix labeled by its column vectors.
It is easy to verify thac

Pt =0 (16)

as required by the condition that it be a unit vector.
A further representation can be obtained by writing

P, = B'MB (n

where B is the 2 X 3 matmx given by

1 0 b ,
8= 1= b (18)

0 1 b '

Equadons (17 and (14) may now be combined to give
p="S 2 M XXT (19)

1) y-)
where ‘

X, =8 + by(S x E) (20a)
X;=E + bgS x E) (20b)

Equation (16) is again satisfied since
X;ra=0

i
—
~

tJ

—

=

e
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Single-Frame Spin-Axis Estimation from the Measurement of
Tweo Arc Lengths and the Inciuded Dihedral Angie

The ambiguity in determining the spin-axis observed in the previous section Is re-
moved if the inciuded dihedral angie is aiso measured. The dihedral angle ¥ is defined
as the angle between the (S. i) and (E, i) planes and is easily shown to be given by

i (S x E)

1 = el
R (RNT TS [N 5 ==
(§-E) = (§-ANE-n)
= "
cos ¥ {{t = 8- arj{t = E-aF}” (=)
- (§ x E)
= )
MY T -5 mE ™ 1==¢)
The geometry is depicted in Fig. 2
To determine the spin-axis attitude it will be convenient to define
={(1 - - H]"siny (23)
and
- o
¢ =|ce (24)
Cx
The vector a is now determined by four equations
cs = ag + aE(S - E) (25a)
Ce = a,(S ‘E) + as (25b)
a
n
3

.m)

w)

FIG. 2. Spin-Axis Attitude from the Measurement of Two Arc Lengths and One Dihedral Angle.
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cv = 1S X Elfay (25¢)

| = ai + a} + 2asaeS - E) + a3|S x EP? (25d)

The three components of a are now overdetermined. The most convenient solution is
obtained by soiving the first three equations. which are linear. [eading to

a=Uc (26)

where
I  =(S-E) 0
U=iSxE7=S-E) | 0 (27)
0 0 l

The spin axis n given by this a. however. is not properly normalized since the mea-
surements are not exact. A properly normalized spin-axis vector is then obtained by
simply normalizing the sotution

A = n/|nj (28)
The covariance matrix of a is given simply by
P,=UPU’ (29)

and the covariance matrix P, for the unnormalized spin-axis is given by (14) once again
with P, replacing P. The covariance matrix of the properly normalized spin-axis vector
Is recovered as

P = ni"*QP.Q (30)

where
Q =/ - i (3D
It is well to ask how good is the approximation of ignoring the normaiization
condition and then normalizing the solution post hoc. [nstead of this seemingly brutal

approach one can find the best solution to equations (25a-25¢) subject to the constraint
of (25d). i.e.. one seeks (0 minimize the loss function

L(a) = (c = Aa)'P '(c ~ Aa) (32)
subject to the constraint
a’Aa = | (33)
where ,
U 0
A=y ={8-E) | 0 (34)
0 0 ISxEp

The soiution is straighttorward and vieids
2 = (A = AP)'c (35)
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where A is the Lagrange multiplier for the constraint and from (33) is the root of the
equation

(A - AP)'A(A = AP) e = | (36)

which yields the smailest value of the loss function.
Equadon (35) may be rewnrtten

Ay = ([ — AUP)™'a 137

where a is given by (26). Since a,,, is expected to be ciose to a. it follows that AUP,
must be small. An approximate solution for a,, can be obtained by expanding
equations (36) and (37) in AP. and soiving. This may be compared with aupew. 1€ resuit
of simply normaiizing the approximate soiution a. as given by (26). The resuits t0
lowest order 1n the normaiization error are

Qs = (| + /2] (38a)
3 = (1 + (e/2)D]a (38b)

where
D = (a"Pa]'UP, 139

1s a matnx ot order unity, provided® that the Sun and nadir vectors are not parallel or
neariy parailel. and

e=1-2aAa (40)
is the normalizarion error. which can be readily shown to sausfy

(e) = =TUP) 1d1a)

() = 4a’Pa (41b)

Thus, little accuracy is lost by ignoring the normaiization constraint and then nor-
malizing the resuit post hoc.

Batch Estimation of Spin-Axis Attitude

The value of avoiding trigonometric expressions becomes more obvious in dealing
with batch esumation. Here. the computational advantage of the present approach over
the geometrical approach (3] is substantial.

For batch estimation the non-orthogonal basis cannot be used since only the Sun
vector is constant {and then only for relativeiy short data spans). The present treatment
focuses on the case where the measurements consist of two arc lengths and the inciuded
dihedral angie. The extension to other cases is straightforward.

Let cs(9), celd). cnli) be a series of measurements of the Sun projection. the nadir
projection, and the Sun-nadir dihedral angle. respectively. Then the best solution for the
spin-axis is obtained by minimizing

v .
L) = 2{osledd) = a - SF = ofledid) = - EP < odledd = a8 x BV
t=)

(42)
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subject to the constraint
A-a=1 (43)

In order to decrease the number of subscripts in the expressions it has been assumed
that each data type is available at each time and that each measurement type has a single
characteristic error. Except for a proiiferation of subscripts the expressions which
follow are not changed when this assumption is removed.

The minimization of Eg. (42). subject to the constraint. (s straighttorward and
leads to

=M= AV (44)
where
M= 2 (07887 + o BE + o348 x ElS x E)) (452)
Y . _ o
V = 2 {o5ii)S; + oilce)E, + aitend (S x E)} (45b)
-
and A is the root of
Vi ~ ATV = | (46)

which leads to the smallest vaiue of equation (42).
As in the previous section it can be expected that the constraint can be ignored
(A = Q) and the solution be approximated by

& = n/lnj (47N
where

n=M"'V (48)
This approximation has been tested for one spacecratt and been observed to be quite
good (10]. The covariance of n is given by

Po=M" ' (49)
and the covariance of the normalized solution is given again by equation (30).

The error due to the negiect of the normalization constraint in the optimization can

be analyzed in the same manner as in the previous section with the resuit that the error
introduced into n is of the order of N™'Tr(P,).

Measurement Errors

The computation of the spin-axis covariance matrix requires as input a modei for the
covariance matrix of the cosine measurements. Expressions are derived here for com-
puting these for the case of Sun and nadir measurements. The wreatment when one of
these measured quantities is the magnetic field is treated in the same way.

Sun Measuremenis
The quantity measured is usuaily the Sun angie, 8. Hence.
dc; = —sin 868 {50)
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Nadir Measurements
[f the spacecraft has angular velocity w. then the Earth width is given by

where ¢, and t, are the in- and out-triggering tmes. respectively, of the Earth scan (for
a momentum-wheel mounted scanner. w wiil be the angutar velocity of the momentum
wheel).

Then. using the resuits from the appendix

6cge = dcos n

dcos n
3 cosif)/2)
sin n

- ———— cos{{2/2)
cot y = cot n

5 cos({1/2)

@ sin n . <
D . ———————— - b
> o po {sin(£2/2)) (8ty = B1) (52)

where v is the scan-cone haif angle,

Dihedral Angle Measurements

The dihedral angie & is determined from the time incervai from the Sun crossing to
the mid-point of the horizon scan

!
U= G)[ls - ;(Io + ’1)] (53

Thus. (8. 2. &) or (B. 7, ) is a set of statistically independent vanabies. The “dihedral
cosine” cy, however, is given by

cv = sin Bsin npsin ¥ (54)
hence
dcy = cx{cot BB + cot ndm + cot WSy} 155

From equadons (50-55) the covariance matrix 2. can easily be calculated.

To a large degree. much of the rigonometric complexity which has been removed
from the attitude soiution has simply been shifted to the computation of a dernived
measurement covariance matrix. There is. however, a substanual gain because the
covariance matrix need not be computed to the same degree of accuracy as the spin-axis
atritude itseif. Hence, a great deal of computational approximaton is possibie. such as
approximation of the rigonometric functions by simpie rationai functions.

Appendix
Measurement of the Nadir Angie

Because the Earth is an extended body the nadir vector is not measured directly. but
determined from measurements of the Earth width. Earth widths are measured by a
horizon scanner, which effectively is a sensor mounted on a rotating cone (of half-cone
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angie ) about the spacecraft spin axis. which detects the crossings of the Earth horizon
on the scan cone. The Earth has an etfective angular radius or p. which s a function
of altitude and (for a non-spherical Earth) latitude. The Earth width is the dihedrai angie
between the in- and out-crossings (4, and H,) of the horizon by the scanner and 1s
denoted by (1. These quantities are rejated by the spherical law of cosines (2]

COS ¢ = COS ¥ COs n + sin ¥ sin 7 cosif2/2) (A-D

The geomertry is depicted in Fig. 3.
Equation (A-1) may be solved to give

cos 7 = A™'[cos pcos ¥ = sin p cost)/2) (A = cosp) 7] (A-2)
where
A = cosp + sin*y cos*(£)/2) (A-3)

The sign ambiguity may be eitminated if another measurement 1s present. say that
of the Sun angle, 3. and the Sun-Earth dihedrai angie. v. Let £ be the arc {ength from
the Sun direcuon to the mid-scan point

cos £ = cos Bcos y + sin B sin ycos & (A=)

Then it is possible to show that the undetermined sign in equation (A-2) must be the
same as that of N

FIG. 3. Geomertry of the Nadir-Angie Computation.
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(cos B8 = cos y)(E-S - ¢os &)

Alternauvely, one may consider simuitaneously Sun and horizon measurements.
This leads to three simultaneous equations

cos Bcos n + sin Bsin ncos ¥ = E-S {A-3a)
Cos Y¢os 1 + sin y sin 7 cost§d/2) = cos p tA-3b)
cos'n + sin"n = | {A=3¢)

Equation (A-2) was obtained by solving t A-3b) and (A-3c) simuitaneousiy. One could
just as easily soive {(A-3a) and (A-5b) for cos n and sin 7. The resuit will not neces-
sanily satisfy (A-3¢). but the two equations have the advantage of being linear. The
soluttons can then be renormalized to satisty (A-3¢).

This approach of ignonng the proper normalization for the trigonometric functions
has another advantage in that a simuitaneous solution to (A-3b) and (A-3¢) may not
€XISt in certain extreme cases.

There is. however. one clear disadvantage. [f equation (A-2) is used. then 8. 1. und
& will be stauisticaily independent. [f. however. the linear equations are soived. 7 will
be correfated with 3 and . Thus. the simplicity gained in computing cos 7 s counter-
balanced by greater compiexity in computing the measurement covariance mawnx P .
However. the computational advantage of dealing with lineanzed equations and the
absence of square roots far outweighs the smali additional burden of compuung two
more elements of the measurement covariance matrix.

References

(1] SHUSTER. M.D. and OH. S.D. “Three-Axis Athitude Determination from Vector Observations.
Journal of Guidance and Controi. Vot. 4, No. |. January-February. 1981, pp. 70-77

(2] WERTLZ. . R. (ed.) "Spacecrart Attitude Determination and Cuntroi™ (Chapters (0 and 111, D. Rerdel
Publishing Co.. Dordrecht. The Netheriands. (981,

(3] WERKING. R.D. A Generalized Technique for Using Cunes und Dihedral Angles in Attitude Deter-
minanion. NASA X-581-73-292. September 1973.

(4] WERTZ. J.R. and CHEN. L.C. “Geometnicai Procedures tor the Analysis of Spacecraft Attitude
and Bias Determinability.” Paper No. AAS7S-047. AAS/AJAA Astrodvnamucs Specialist Conterence.
Nasssu. Bahamas. July 28-30. 1975.

(51 WERTZ. J.R. and CHEN. L. C. "Geometnc Limitations on Attitude Determination for Spinning
Spececratt.” Journail of Spacecrart und Rockets. Vol. 13, 1976, pp. 564=371.

{61 CHEN. L.C. and WERTZ. J. R. “Singie-Axis Attitude Determination Accuraey.” AAS  AIAA Asrro-
dvnamics Conference. Geand Teton National Park. Wvoming. September 7-9. 1977

(71 CHEN. L. C. Auutude Determunutton Accuracy Constraines on the SIRIO Lunnch Window, Computer
Sciences Curporation. CSC. TM-76/6210. September 1976.

(81 WERTZ. J.R. "Sphencal Geometry.” in Wentz, J. R.. (ed.) Spucecrurt Artitude Derermnatton and
Countroi (Appendix A). D. Reidel Publishing Company. Durdrecht. The Netherianus. 1978

(9] GRUBIN. C. ~Simpie Algorithm for Intersecting Two Conical Surfaces.” Journai of Spacecrust und
Rockets, Vol. 14, 1977, pp. 251-252.

{10] THOMPSON. R. H.. NEAL. G. F and SHUSTER. M. D. "Spin-Axis Attitude Estimatiun and Sensor
Bias Determunation for AMPTE.” Flight Mechanics Estimation Theory Symposium. NASA Goddard
Space Flight Center. Geeenbeit. Maryiand. October 27-28. 981.

“Lhe sw, LN#, dihedral 215l ¥ | mouid e

.o Y]
Vihe Dun- Barih danedces A%, ¥



