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I. Iatroduction due to the use of rotating or rastering instruments lead to
HIS report reviews the methods of Kalman filtering in significant uncertainties in the modeling. For autonomous
attitude estimation and their deveiopment over the last spacecraft the use of inertial reference units as a model
two decades. This review is not intended to be compiete but is replacement permits the circumvention of these problems. in
limited to algorithms suitable for spacecraft equipped with this representation the angular veiocity of the spacecraft is
three-axis gyros as weil as attitude sensors. These are the obtained from the gyro data. The kinematic equations are
systems to which we feel that Kalman filtering is most ap- used to obtain the attitude state and this is augmented by
plicable. means of additional state-vector components for the gyro
The Kaiman filter uses a dynamicai model for the time biases. Thus, gyro data are not treated as observations and the
development of the system and a modeli of the sensor gYTO noise aPpEArs as state noise rather than as observation
messurements to obtain the most accurate estimate possibie noise.
of the system state using a linear estimator based on present It is theoretically possible that a spacecraft is three-axis
and past measurements. [t is, thus, ideaily suited t0 both stabilized with such rigidity that the time development of the
ground-based and on-board attitude determination. However, system can be described accurately without gyro information,
the applicability of the Kalman filtering technique rests on the or that it is one-axis stabilized so that only a single gyro is
availability of an accurate dynamicai modei. needed to provide information on the time history of the
The dynamic equations for the spacecraft attitude pose system. The modification of the aigorithms presented here in
many difficuities in the filter modeling. In particuiar, the order t0 apply to those cases is slight. However, this is of little
external torques and the distribution of momentum internaily -  practical importance because a controi system capabie of such
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accuracy invariably includes gyros in the control loop and
these may be sampied to obtain the full anguiar velocity.
Therefore, with littie ioss of generality, the algorithms here
are specialized to spacecraft with three-axis gyros.

Throughout this report the attitude is represented by the
quaternion. The deveiopment of the Kaiman filter for the
quaternion representation was motivated by the requirement
of reai-time autonomous attitude determination for attitude
control and the annotation of science data. The quaternion
parameterization was chosen for several practical reasons: 1)
the prediction equations are treated linearly, 2) the
representation is free from singuiarities (thus the gimbai-iock
situation is avoided), and 3) the attitude matrix is algebraic in
the quaternion components (thus eliminating the need for
transcendental functions).

The use of the quaternion as the attitude state presents some
difficulty in the application of the filter equations. This
difficuity is due to the iack of independence of the four
quaternion components, which are related by the constraint
that the quaternion have unit norm. This constraint resuits in
the singularity of the covariance matrix of the quaternion
state. The various ways to treat or circumvent this difficulty
make up the major part of this report. Each of the filters
discussed predicts the quaternion state in the same manner as
if each component were independent. Different approaches to
the update equations and to the covariance representation and
its propagation give rise to the different methods presented.

In principal, one can aiso estimate other sensor biases by
suitably augmenting the state vector. In general, however,
these other biases are not estimated simuitaneousiy with the
attitude due to problems of observability under normal
spacecraft operating conditions. Therefore, the estimation
methods for sensor biases other than gyro drift biases will not
be treated here.

Section 11 of this report reviews the reievant literature on
Kalman filtering as appiied to attitude estimation and on
related topics. Since the attitude problem is noniinear, the
vehicie for optimal estimation is the extended Kalman filter,
which is reviewed in Sec. III without derivation. Attitude
kinematics are reviewed in Sec. |V, with emphasis on the
quaternion representation. A discussion of gyros used in the
model repiacement mode and the modeling of attitude sensors
is presented in Sec. V,

The state equation and the equation for attitude prediction
are derived in Sec. V1. Various approaches to the filtering
equations are discussed - in the succeeding five sections.
Section XII reviews the advantages of the different methods.
Severai resuits of interest have been gathered in the Appendix.

The intent of the present work is t0 provide a compiete
account of what now seem to be the reievant filtering
algorithms rather than 10 present a new approach. An attempt
has been made to present the current methods in 2 common
framework in order to produce a useful reference for future

IL. Historicul Survey
Early Applications of Kalman Filiering
The Kalman filter,!? which was originaily developed as a
toolmhnarmmthcory wuaoonnpplwdwnonhm

program Schmidt and his collaborators.*
mﬂwmmsmsm‘"dma
recursive theory for satellite navigation which differed from
Kalman’s in the trestment of the process noise and was not
carried out as compietely, Standard treatments of Kalman
filtering can be found in the review of Sorenson® and the
textbooks of Jazwinski® and Gelb. 0

An accurate and compiete historical survey of Kalman
filtering for attitude estimation is not possible since the
and hence couid not be published in the open literature. The
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earliest published reference is by Farrell,!!!2 who studied the
extent to which Kalman filtering of crude attitude
measurements from sun sensors and magnetometers couid
provide attitude accuracy equivalent to that obtained without
smoothing from more elaborate instrumentation. Farrell
represented the attitude by Euler angles and assumed torque-
free motion in the attitude prediction. Cherry and O’Con-
nm',u in their design of the lunar excursion module autopilot,

sequential estimation of the disturbance torques
induced by the ascent or descent propuision sysiem. Potter
and Vander Velde!4 used Kalman filtering theory to determine
the optimum mixing of gyroscope and star tracker data in an
attitude determination system. Generally, as remarked by
Sabroff,!? the application of Kaiman filtering to attitude
estimation had not shown impressive resuits up to 1967. Aside
from insufficient study, the lack of real success in applying
optimai estimation was caused by the inability to model the
system dynamics accurately.

Continued effort in this area was evidenced at a symposium
on spacecraft attitude determination in 1969, at which six
papers were presented on the appiication of Kalman filtering
to this problem. Foudriat!* and Armeson and Nelson!’
considered spin-stabilized sateilites, while Ribarich!® and
Lesinski!® were interested in the duai-spin case. Pauling,
Jackson, and Brown® and Toda, Heiss, and Schiee3 studied
the space precision attitude reference system (SPARS), which
used gyro measurements in & model repiacement mode with
periodic star-sensor updates, Pauling et al.?® used the attitude
matrix for state prediction and Euler angies for updates, while
Toda et al.¥ used the quaternion for prediction and in-
cremental error angles in the update. Jackson® aiso con-
tributed a paper to the symposium on the application of
noniinear estimation theory to the attitude determination
probiem, an applicarion that was aiso studied by Kau, Kumar,
and Graniey.®

In a 1971 review of strapdown navigation by Edwards,?
Kalman filtering is not treated but the use of the quaternion
and error angles for state prediction is discussed. A review
arndebyShmdtbaw Samueisson, and Carisson® extends

the history to 1973 and contains a classification and
discussion of extended Kalman filter methods for attitude
determination, with specific emphasis on aigorithms suitable
for on-board computation.

Attitude Representations

The nonlinear aspects of rotationsl kinematics are
discussed in many texts.?*¥® Approsches which treat the
spacecraft axes as uncoupied (thus ignoring commutation
errors) have been studied by Potter and Vander Veide, !4
Ribarich,?® Schmidtbauer et al., and Farrenkopf.’) This
approximation leads to independent linear estimation
problems for the three spacecraft axes, and closed-form
expressions for the steady-state estimation errors can be
obtained in some cases. '3 Uncoupied-axis Kalman filters
empioying both gyro data and dynamics modeling have been
used in on-board attitude controi systems, in the NASA
International Ultraviolet Explorer and Solar Maximum
Mission® spacecraft, for exampie.

Stueipnagei’? and Markiey* discuss different pars-
meterizations of the attitude that have been used when the
decoupled-axis approximation is not applicable. Early
strapdown navigation systems used the direction-cosine
mmumcmmonohhcmmubuewmd
off, quantization, amrl truncation errors in the attitude
propagation, this proce-t::5: feuuils 10 an attitude matrix that
is not orthogunal.’** Vznous ortnogonasiization schemes for
the attitude matrix wers aeveloped: but Giardina., Bronson,
and Wallen’ proved that an optimai orthogonalization (one
that minimizes the sum of squares of the differences between
the elements of the propagated matrix and those of the or-
thogonalized matrix) requires a computationaily expensive
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matrix square root. Because of this problem and the
redundancy of the nine-parameter direction cosine
representation, it has not been widely used recently.

The three-parameter Euler-lule representation?é-20.34
was used in several early of Kalman filtering to
attitude estimation, !116&17.19.80.3 However the kinematic
equations for Euler angles invoive nonlinear and com-
putationaily expensive trigonometric functions, and the
angies become undefined for some rotations (the gimbal-lock
situation), which cause probiems in Kalman fiitering ap-
plications. Despite these difficuities, the Euler angie
representation continues to be used for the attitude estimation
of spinning spacecraft. Stueipnsgel’® discusses two other
three-parameter representations: the exponential of a 3 x3
skew-symmetric matrix (rotation-vector representation) and
the Cayley parameterization (not to be confused with the
Cayley-Klein parameters). The latter is equivalent to the
Gibbs-vector parameterization.’ Neither of these repre-
sentations has found a Kaiman filtering application, to
our knowiedge. Stueipnagel proves that no three-parameter
representation can be both giobal and nousinguiar.

The giobal nonsinguiar four-parameter representation of
thcmmldemlemofEuh‘ssymmor

vented by Hamilton’® in 1843; their use in astitude dynamics
simuiations was promoted by Robinson’? and by Mitcheil and
Rogers.® The artitude matrix computed from a quaternion
(as 2 homogeneous quadratic function) is orthogoaal if the
sum of squares of the quaternion components is unity. If
propagation errors resuit in a violation of this constraint, the:
quaternion can be renormalized by dividing its components by
the (scaiar) square root of the sum of their squares; and
Giardina et ai.® showed that the artitude matrix computed
from the renormalized quaternion is identicai to the one given
by their optimal orthogonmaiization. The application of
quaternions to strapdowa guidance, with error anaiyses, was
discussed by Wilcox’® and Mortenson.* Quaternion
kinematics has besn the subject of several recent studies. >4
Of particuiar concern has besn the best method for extracting
a quaternion f{rom a attitude matrix.“*R A recent review of
quaternion reiations has besn given by Friedland. ¥’

The advantages of the quaternion parameterization have
led to its frequent uss in attitude determination systems. One
exampie is an antemye by Lefferts and Markiey* to moded the
attitude dynamics of the NIMBUS-6 spacscraft, which in-
MMWWMMWDN
couid still not give accepeable attitude determination ac-
curacy. For this resson, moss applications of quaternion
attitude estimagion have used gyros in the dynamic model
repiacement made. These inciude the work by Toda et al.¥
wmmeuanamM
attitude determination system (PADS),’* which was in-
corporated in the attitude determination system for the High-
Energy Astronomy Observatory (HEAO) mission,’*® by
Yong and Headley”* for highly mansuverable spacecraft, by
erdl"lnadeunrormoNASAanmModulu
Spacecraft, by Sorenson, Schmidt, and Goka* in a square-
roox filtering application, by Shuster and co-workers®3* for s
microprocessor-based on-board attitude determination
system, and by Markiey¥ for an autonomous navigation
study.

Gyve Nelse Models

The first papers describing statistical modeis of gyro drifts
were by Newton® and Hammon® in 1960. Newton con-
sidered additive white noise in the gyro drifts, while Hammoa
assumed that the gyro drift rates were an expouentially
correisted random process. Dushman® considered a drift-
rate model obtained by adding a random walk component to
Hammon’s autocorreiation function. Early impiementations
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of gyro noise models in Kalman filters were generaily in-
compiete. Thus, Potter and Vander Veide!4 inciude only the
random waik term in the drift rate, while both Pauling et al.®
and Toda et al.3@ have only the white noise term.
Farrenkopf?'® considered a gyro model including ail the
terms discussed above. This model was used in the subsequent
HEAO system deveiopment. -7

M. The Kaiman Filter
We review in this section the principal equations for the
extended Kalman filter®! in order to introduce the necessary
notation for the sections which follow.
The state equation may be written as

d
3;(1)-/(x(l).l)-o-‘(x(l),:)w(:) )]

where x(¢) is the state vector and w(¢), the process noise, is a

Gaussian white-noise process whose mean and covariance
function are given by

Elw(t)] =0 )

Elw()w? (1) | =Q(0)8(1=1t") 3

E denotes the expectation and T the matrix transpose. The
initial mean and covariance of the state vector are given by

Elx(1y) | mx(t,) =x, )
E([x(t9) =X 1 (X(1g) =xo] T} mP(t,) = P, )]
Prudiction

Given the initial conditions on the state vector and the state

covariance matrix, the minimum variance estimate of the state

vector a2 2 future time ¢ is given in the absence of
measurements by the conditionai expectation

() mElx(1) |£(14) =x,] ®

This predicted estimate satisfies the differential equation

%i(r) =E(fix(1),0) | mf(x(0),0) W)
which we write approximately as
%i(n =af(£(1).1) ®

Equation (8) may be integrated formally to give
2(2) =me(L3(1g)044) 9
The state error vector and covariance matrix are defined by
Ax(/) =x(1) = 2(0) (19
P(1) = ElAx(5)AXT (1)) an

Neglecting terms which are higher than first order in the state
error vector and the process noise, the state error vector

satisfles the differential equation
Ed‘.u(n aF(0)Ax(t) +G(1)w(t) 12)
where
Fl)m Ia-'/(x.t) o ad»
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Gty mg(2(1).0) (14)

Equation (12) may be integrated formally to give
Ax(1) m(1,10) AX(ty) + j (LI )G I w(r YA (15)
where #(1,1,) is the transition matrix, which atisfies
%O(M,) =F(1)#(1,1,) (16)

$(tg29) =1 (an
Note that for nonlinear systems ¥(1,Z,) also depends im-

plicitly on £(¢,), which for notational convenience will be

suppressed.
The predicted covariance matrix satisfies the Riccati
equation

%P(r)-F(l)P(r)+P(t)F'(l)+G(r)Q(r)Gr(l) (18)

which may be integrated to give
P(1) m®(1,89) P(ty) 97 (1.44)

+S: B0 )G YQU)GT () 8T (e YA (19)
0

In more compact notation, £,(—) and P, (—~) denote the
predicted values of the state vecior and staie covariance
munxaxumer,. and £, (+) and P ( +) denote the same
quantities immediately following 2 measurement at time ¢,.
Thus, in obvious notation .

s (=) m(tyy oy (+)01y) (20)

Py, (=) m&,P,(+)[+N, (21)

Filtering
The measurement vector at time ¢, is related to the state
vector by

z.-ll(-!.) +0, (22)

where v,, the measurement noise, is a discrete Gaussian
white-noise process

Ely, ) =0 (23)
Eloyol ) =R, b, (29)

The minimum variance estimate of x, immediately
following the measurement is givenby

P (+) mE (=) + K (2, =R (R (=))] 29
where the Kalman gain matrix is given by
K =P, (=)H[[H,Py(=)H] +R,] "' 26
and the measurement sensitivity matrix is given by
dh(x)

H,- Zn

(=)

The covariance matrix immediately following the
meastrement is given by

Py(+)m(I-K H)P, (-) (28)
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~

= (=K H )P (=) (U=K H ) T+ KR KT (29)

Equation (29) is the starting point for many efficient and
numericaily stable factored forms of the Kalman filter. ™

In the sections which follow, the impiementation of the
above equations is examined for three different represen-
tations of the attitude estimation problem. In each case,
explicit expressions are developed for the transition matrix &
and the sensitivity matrix H.

IV. Attitude Kinematics
In the systems investigated in the present study the attitude
is represented by the quaternion defined as

) q
]
94

q¢=cos(8/2) Qan

where
q=7i sin(0/2)

The unit vector # is the axis of rotation and # the angie of
rotation. Quaternions will always be denoted by an overbar.
The quaternion possesses three degrees of freedom and
satisfies the constraint

§7gm=i (32

The attitude matrix is obtained from the quaternion ac-
cording to the reiation

Al@) = (g, 12 = Igi®) 1, +2997 +2q.(q] (39

where
0 9 -4q;
gl=) -q 0 q (34)
q: -q 0
This notation will be used generally for any 3 x3 skew-
symmetric matrix generated from a three-vector. The con-

vention will be followed that A is the matrix which transforms
wnnmofvmmﬂnnfm(mﬂym

lneonmtotheusuleonveuuonforqmoncom
position established by Hamilton?® the product of two
quaternions will be written in the same order as the

corresponding rotation matrices. Thus,
A(Q)A(Q =AG' DY (39
The composition of quaternions is bilinear, i.e.,
¢’ Sd=(¢’'1q (36)
with
9 @G =9 q
(0] = -q; 9 9 9 an
@ - % 4

-q; -q; -q; qe
or

' ®d=(4)¢’ (38)



SEPT.-OCT. 1982
with
% -q o q
=] 0 T g
-4q; 4 94 q

-4 -9 -4q; 9

The rate of change of the attitude matrix with time defines
the angular velocity vector v

d
FAW=1e0 14 (40)

The corresponding rate of change of the quaternion is given
by

d . .
;4(')'”0(0(!))4(!) 4D
with

0 Wy —wy, W

.- ] w W
aim| T @

Wy —w, 0 ay

-, ~w; —uwy 0

It will be convenient in Iater sections to define the four-
component quantity
-
o= (43)
0

d
a'i(l) = #3(N ¢(1) (44)

If the direction of « is constant over the time intervai of
interest or if the ‘‘rotation vector’’ defined by

tom
A= 5' @ (e )de’ (49)

is smail, then the solution of Eq. (41) is
dit+an =M an§(r) (46)

where

1A
M(AR) mcos( 1401 /2)] o, + "—4"—3'—’2—’ QAN @D

V. Semsor Models
The spacecraft being studied is assumed to be equipped with
three-axis gyros as weil as (nongyroscopic) attitude sensors.

Gyvre Modals

We use a simpie but realistic model for gyro operation
deveioped by Farrenkopf*! and appiied to the HEAO mission
by Hoffman and McEiroy.’’ [n this modei the spacecraft
anguilar velocity is reiated to the gyro output vector & ac-
cording to

'-.-b-" (“)
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The vector b is the drift-rate bias and y, is the drift-rate noise.
¥, is assumed to be a2 Gaussian white-noise process

Elw,(t)}=0 49
Eln, (9] (¢") | =Q,(1)6(t=1") (50)
The drift-rate bias is itseif not a static quantity but is driven

by a second Gaussian white-noise process, the gyro drift-rate
ramp noise

%b-v; . (51

with
Elw(t) | =0 (52)
Elng ()95 (t') 1 mQ, (1) 8(¢—1") (53

The two noise processes are assumed to be uncorrelated
Eln,()nf(¢’) | =0 (54

[n generai, 4, b, v,, and ¥, will be linear combinations of the
outputs of three or more gyros. which need not be aligned

aloag the spacecraft axes.
An alternative equation for the drift-rate bias

d
ab- ~&/r+vy (62}]
gives rise t0 an exponentially correiated noise term as in the
model considered by Hammon.*’ In order to reproduce
realistic gyro data. a superposition of several drift terms, with
different values of the time constant may be needed.® Since
reiatively persistent drifts are observed in actual gyro
operation, at least one time constant must be very large.
Letting ¢ be infinite, which ieads to Eq. (51), is adequate for
In the propagation equations to be used in the Kaiman
filter, Eq. (48) is assumed to be integrated continuousiy. The
modei thus assumes that the gyros are used in a rate mode. In
practice, however, rate-integrating gyros are used, which
sense the spacecraft anguiar rates continuously but are
sampied at discrete intervais. The spacecraft attitude is aiso
propagated at discrete intervais, equal to either the gyro
sampling intergal or some muitipie thereof. [f the attitude
update interval is much shorter than the Kaiman fiiter update
intervai, as it always is in practice, the approximation of
continuous gyro updates will be good.

Attitude Sensers

The arttitude sensors considered here may be any sensor for
which the measured quantity depends solely on the direction
of some object in the sensor coordinate system. Thus, we treat
the most general case possible, aithough in most practicai
applications of Kalman filters for attitude estimation, these
sensors will be vector sun sensors and star trackers. which are
the most accurate.

The direction of a body in the sensor coordinate system p¢
is reiated to the direction in the reference coordinate system

Pp according to
Ps=TA({)p, (56)

where A(4) is the spacecraft attitude and T the sensor
alignment matrix. Note that the measurement depends ex-
plicitly on the attitude but not on parameters such as gyro
biases.

It will be assumed throughout this report that the sensor
measurements are scalar and uncorreiated. [n generai, the
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correiation between the measurements is smail. When this is
not the case, a set of uncorreiated measurements can always
be achieved by choosing a representation in which the
measurement covariance matrix is diagonai.

V1. The State Equation
The spacecraft attitude state is given by the attitude
quaternion and the gyro drift-rate bias vector

g
x(l)= (En))
b(t)

and thus has dimension seven. The quaternion and the bias
vector have been shown to satisfy the coupied differential
equations

d
aé(l)-%ﬂ(u(l)-b(l)-q,(l))q’(l) (58)

d

ab(l) =y, (f) (59)
Noting that the matrix function Q is linear and homogeneous
in its argument and defining the 4 x 3 function 2(4§) by

2(0)gmE(§)d (60)

Eq. (58) may be rewritten as

d
ad(l)-%ﬂ(u(t)—b(l))q'(l)-%E(é(f))h(l) (61)

Equations (59) and (61) are now in the same form as Eq. (1).
The matrix Z(§) has the explicit form
49¢ -9 q;
qs q9 -4
=q; q: qe
-q; =q; =9
The properties of the matrix Z(4) are discussed in the Ap-
pendix.

Prediction

The predicted state vector is defined as in Sec. 11, Taking
the expectation of Eqs. (59) and (61) leads, within the ap-
proximation of Eq. (8). to

7:;6- %0(a)qd (%))

ad-;b.-o (64)
where

omy—=b (635)
is the estimated angular velocity.

From Eq. (64) we see immediately that b is constant over
the prediction interval. Thus, & depends only on #(?) and the
initial value of the state vector. Therefore, Eq. (63) can be
integrated directly to give

G =me(n,t,)4(1y) (66)
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with
%O(I,l,) =/A0(a())0(4nt,) (67
O(2,.0,) =1, ., (63)

When the direction of &(¢) is constant throughout the time
interval or the angular displacements of the axes is smail, then
©(¢,¢,) can be approximated by Eq. (47).

VII. The Seven-Dimensional Covariance
Representation

The simpiest approach to express the state-error vector and
the covariance matrix is to define these in terms of the
compiete state vector as in Eqs. (10) and (11).

Prediction

The seven-dimensional state error vector satisfies the
differential equation

%um = F(H) ax(1) +G(1)w(D) 9
with
[ 4@ | - 4%E(
F(t)= 4 (70)
- aJlt : o.hl.l
[ =#E(§) | Ouy
G()= + on
L Oy | g
" (n
w(l) = 72)
(1)
and, therefore,
Q@ 0
Q(l) - [ 1 } Inl } (73)
s Qa(0)
F{t) and G(t) are determined straightforwardly from Egs.
(13), (14), (59), and (61).
The transition matrix has the géneral form
e(’n’.) : *('ﬂ‘o)
P(G40) = + 74)
e 1 Iy

where ©(1,1,) is given by Eqs. (67-68) and
'aa'i“""’) = 40(5(01,) ) ¥(01) = BE@G(D)) (19

subject to
¥(loely) 04y, (76)

Equation (75) may be integrated directly to yield

! 3
“"")'-“5. (Lt )E(q(e’))de’ ™
0

Filtering
Since the measurements are assumed to be scalar and to
depend only on the attitude and not the bias vector, as
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" discussed in Sec. V, it follows that the sensitivity matrix is a
seven-dimensional row vector of the form
H=[t, 07] (78)
where
dh Ape
79
(ap, aq)la -) ™
Define the vector r by
re [ 3k T] (80)
ape

then it can be shown that
g-[ir.A(q)p.] | =2rxppTE (G0 @D
aq §(~)

where
PamA(d(~=))pa (82)

VIIL Singuiarity of the Covariance Matrix
The covaniance matrix for the seven-dimensional state
vector is singuiar. This follows immediately from the con-
straint on the quaternion norm so that

AgT w0 (83)

is a nuil vector of P(?).

This singularity is difficuit to maintain numericaily dus to
the accumuiation of round-off error. If fact, 2(¢) may even
deveiop a negarive cigenvaiue. The simpiest way 10 maintain
the singuiarity is to represent P(¢) by a marix of smailer
dimension. There are three possible approaches 0 ac-
complishing this, two of which lead to the same resuit. The

examination of thess three approaches forms the subject
manter for the remainder of this report.

IX. Reduced Representation of the Covariance Matrix
A 6% 6 representation of the covariance matrix is induced
by the form of the transition matrix prescribed above.

Prodiction
It can be shown (ses the Appendix) that

0Lt Z(d () (=E(F(M)A(LL) (84)
where
At ) =A(J(0))AT (")) (89)
is the 3 x 3 rotation matrix which transforms the estimated
attitude matrix from time ¢’ to time /. Substituting this into
Eq. (77 leads to
Y(,09) =Z(J(0)) K(L.1,) (86)

K“"")"”E At )de! (Lx)
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[t is also shown in the Appendix that
B(4te) 2E(G( )ALt ET(F(2,)) +G()GT(2y)  (88)

Substituting these expressions into the expression for the
transition matrix gives

®(4,t9) =S(§(0))R(1,05)ST(d(14))

[ @047 | 00y ]

+ 4 (89
[ o!l‘ : 0!:1 J
where

. 2(G()) | 0,
S(G(0)) = {=mmmmeemmeee D (90)

a!xl : 1!:1

Altty) | K(bty)
i(:.:,)-[- M R } o1

ohu i Ihu

The second term of the right member of Eq. (89) annihilates
P(ty) on the left and P(¢) on the right. Thus, if the 6x 6
covariance matrix A(¢) is defined by

By =ST(G(0))POS(4(1)) 92)
this satisfies the integrated Riccati equation of the form

B(o) m@(1,14) P(1y) 9T (124)
+§' () GUHQUHGTU ST (L' )dt'  (99)
9
where

(94)

~%i,, | 0,
G(l)-S’(q’(n)G(r)a[ Sho B o ]
o.hu g IJ:J
In obtaining Eq. (93) repeated use has been made of the
equation
ZT(§)d=o 9%)

At any time the 7x7 covariance matrix P(!) can be
reconstructed via

P(2) =S(4(0)) PIDST(§(n) (96)
Filtering
The Kalman filter may also be mechanized using 5(/).

Define the 1 x 6 matrix A, and the 6 x | matrix X, according
to

A, =H,S(d (=) ty)
Re=P (=) ATLHP (=) AT+R, )" (98)
where A, is as in Sec. VIII. Then it is easy to show that
B+ )m(lyg =R AN By (=) 99
K, =S5(4, (=R, (100)

In implementing this method the 7 x 7 covariance matrix
need never be computed, the 6 x 6 covariance is propagated
and updated using Egs. (93) and (99), respectiveiy. The ex-
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pression for the 1 X 6 sensitivity matrix 4, can be simpiified;
but this expression will be derived in Sec. XI, since it fails out
more directly in that approach. That section contains an
independent derivation of the prediction and filtering
algorithms which turn out to be identical to those presented
here.

X. The Truncated Covariance Representation
The most obvious approach to reducing the dimension of
the covariance matrix is to delete one of the quaternion
components from the state error vector. We may iet this be the
fourth component, aithough in principal any component
coulid be deieted.
The truncated state error vector is then

a ]
Ay= (101)
Ad

This state error vector cannot be treated as simply as the
seven-dimensional state error vector of Sec. VIIL. In Sec.
VIII, the four components of the quaternion were treated as
independent variables with the normalization constraint being
maintained by the form of the equation of motion. In the
present case the fourth component of the quaternion error
must be determined from the constraint according to

l .
Ag,=m - —¢q-Aq (102)
9.

Thus, partial differentiation must be treated differently in the
two cases.

Prediction
The truncated covariance matrix is defined as

P (f)mE[Ay(n)ayT(1)] (103) -

which satisfies )
P (1)=&, (t.1,)P,(2,) 8] (LL,) -
+§ ,(0,0)G, () QUG () 8T (Le )de* (104)
‘0

where

|' 8, (42)

C W (L,
”(’.lo)-[ y(hig) J

(108)
]

Ind IJIJ

is the 6 x 6 transition matrix. G, (/) is defined below.

The submarrices of #,(1,7,) are easily determined from the
corresponding submatrices of ®(1,/,). This is simpier than
anempting to determine ®,(%./,) by direct integration of a
six-dimensionai state error equation.

Note that

i (8)
(8,(Lsp) ]y ( aq,(te) />

9q,(!)
30,(!.) y

(106)

(¥, (et 1o ( aom

where the subscript y indicates that the partial derivatives are
to be computed subject to the constraint. No similar con-
straint exists in the corresponding expression for ©(r.7,) and
¥(t4,1,), the constraint being satisfied by the state equation.
Noting this fact ieads immediately to

[0, (tute) | 4= (O(tutg) ] 4~ (-‘%:—’l))(e(t.t.)l.. (108)
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[¥, (L) ;=¥ (1)), (109)

and aiso
[G,(n],;=1GnD]; (110)

The 7x7 covariance matrix can be recovered from P, (1)
by constructing the missing elements according to

ElAq.(r)Ay,(m--——(;T Eq,m (P01, am

‘ imf

E(Aq.(Aq,(1) ] = ml' Z Eq,m(P (11,4,
1=/ jui

(112)

Filtering
Analogously to Eqgs. (78) and (79) in Sec. V1] the sensitivity
matrix is given by
H,=(t,07] (113)

where the three-dimensionai row vector ¢, is given by

ty= ::3 a;;,) ‘o (118)
which reduces to

()=t = (4,144 (115)
and ¢is given by Eq. (81).

In impiementing the Kalman filter in this case aiso the 7x 7
covariance matrix need never be computed. The state vector is
updated by computing

. i ai(+
A +)mK [2=h(g(=)))= . T (116)
aAb(+)
where X, lscomputed from P,(—-) and H, using Eq. (26).
Aq,(+) is obtained from Eq (102) and the updated siate
vector is given by

4

+)
i(+)-i(-)+u(+)-i(-)+[ )
(

] amn
+)

Note that the symboi Ax( +) in Eq. (117) denotes simpiy the
quantity ( + ) — 3 —) and shouid not be confused with Ax(¢).
which denotes the sixte error. Since the state error never
appears with a caret (its expectation vanishes by definition),
confusion is unlikely. Note also from Eq. (102) that trun-
cation can lead to large errors when g, is small. This can be
avoided by always deleting the quaternion component which
is largest in magnitude.

XI. The Body-Fixed Covarisace Representation

In this section we deveiop an approximate body-referenced
representation of the siate vector and covariance matrix. The
quaternion ervor in this representation is expressed not as the
arithmetic difference between the true and the estimated
quaternion but as the quaternion which must be composed
with the estimated quaternion in order to obtain the true
quaternion. Since this incrememtal quaternion corresponds
almost certainly 10 a smail rocation, the fourth component
will be close to unity (to second order in the vector com-
ponents) and, hence, all the attitude information of interest is
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contained in the three vector components. Therefore, the six-
component object defined by the vector components of the
incremental quaternion and the drift-bias vector wiil provide a
nonredundant representation of the state error. This
representation will turn out to be identical to that deveioped in
Sec. [X.

If the infinitesimal attitude error angles are defined as twice
the vector components of the incrementai quaternion, then
this treatment becomes very similar to that empioyed by
several other authors, 4i-%6

Define the error quaternion as
8Gmg®4-' (118)
and the six-dimension body-referenced state vector as
f-[ % ] (119
b
From Egs. (30) and (62) we have that
d=(d184=(Z(§) : 4184 (120)
whence
YqmZT () (12n
8q.=47q (122)
" and

[ ENE | 0y ][ § ] )
= 4I » (123)

Osne Iyus
=ST(J)x (124)
From Eq. (99) it then follows that
EmST(J)im [ ] 129
9
AimST () azm [ ] (126)
Abd
Note, however, that aithough
Ax=S(d)as (12n
it happens that
EmS(J) £ (128)

The results of Sec. X may now be derived in short order.

From

2 4mu0®4 129

%q’- %éR4 (130)
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it follows immediately that

d .
a-éé-h[a"@&d-éé@él
=4 [®37-5¢@4) + 1180®5¢ (130
where
) - ~Ab~-y,
u-[ },[ },[ } (132
0 0 0
Now
. . -axdq
% 0@8G-5¢@a) = [ } (133
da@8Ggméa+0( 18wl 18ql) (139)
Thus, neglecting the second-order terms
%M-—GXM—%(M'H’,) (139
gm0 136)
d’&h' (

from which it follows that the state error equation may be
written

%um-ﬁmu-»émw(n (131
where
[‘i(”l Vo=l x
I-'(n-r = ] (138)
L Iny ' o]ll J
-wl,, 0,
c‘:(n-r kA % (139)
[ Ind ! I!IJ
G is identical to Eqg. (94).
The transition matrix may be written as
]’ e ¥
ém + - (140)
l. Oy + Iy
with
3 .
Eé(t,lo)atg(l)lé(f.l,) (141)
r ]
5 ¥ (tto) = (80 1¥(0ty) = 5y, (142)
subject to
S(Lgty) =1y, ¥ (to.ty) =0y, (143)
[t now follows immediately that
(8.29) =AlL,14) (144)
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;,(“0),_%5' Al )de’ =K (tt,) (145) K+)=mb(=)+ab(+) (160)
fo
with
so that
. S +)
Alttg) | Kttity) 8q(+)= (el
&(l,lo) =® | vemmmae- s (146)
ixg 3 Liws .
Noting from Eqs. (37) and (60) that
as in Eq. (91). s s .
The covariance matrix is defined as q@De=q+0(5§) ¢ (162)
B(r) mE[AS() AET (1} ] (147) ad+Z(4)s§ (163)
and from Eg. (127) it follows that we see that this aigorithm is identical to impiementing Eq.
. . 100
B(t) =ST(G(1))P(1)S(4(1)) (148) ( W)e note again that the quantities Ax(+), 6§(+), and
. . , which appesr 158-163), d denote
P(1)=5(4(1)) B(nST(4(D) (149) :o:s)b:! l":lh:r ﬁllerl:osqrr;u(om to u)le ;;:wm'suu

as in Sec. 1X, and P(¢) satisfies the Riccati equation
%P(r)-F(:)P(:)+ﬁ(:)ﬂ(n+c(:)qmc"m (150

whose integrai form is simply Eqg. (93).

Filtering
In analogy with the previous sections

H= (o7 sy

where the three-dimensionai row vector {is given by

f :',a?:))la. s
From
A =ABHAG(~)) (153
it follows that
fre (a—(";ump,) | e, (154)
where
PamA(d(=))pp (15%)
Noting that
A(dy) =1y, , +2(8g} (156)

the differentiation may be carried out immediately to give
fa2(rxpy)T asn
The impiementation of these algorithms is identical to those

of Sec. IX. An apparent but not actual difference is given by
the state vector update where

S§(+) .
Af(+)= [ . ] =Kiz=h(d(-)) (158)
AN(+)

from which we have
§(+)med(+)®G(~) (159)

dicted quantities, namely, H(+)-&K-), G(+)®F(-) ",
and 5( + )~ &(~), respectively Again, the presence of the caret
helps us avoid confusion.

If instead of the incremental quaternion the incremental

error angies given by
Sq= 1480 (164)

are used, the expressions simplify somewhat in that the
factors of %, %, and 2 in the expressions for F(f), G(1),
Kit,ty), and { disappear. The impiementation is otherwise
unchanged.

XIl. Coacinsions

In ail the impiementations of the Kaiman filter presented
above the propagation of the siate vector is performed
identically using Egs. (63) and (64). In the propagation the

_four components of the quaternion are treated as independent

variables. Within numerical errors the coastraint on the
quaternion normalization is maintained by the structure of
Egq. (63).

This normalization can be destroyed by the accumulation
of round-off error and the linearization approximation
inherent in the update equation. This need not cause concern
in the propagation of the quaternion since this operation is
linear. Care must be taken, however, when the attitude matrix
is 10 be calculated or when an update is to be performed. The
renormalization of the quaternion can thea be camied out
explicitly.

It is in the propagation of the state covariance matrix and
the update of the state vector and covariance matrix that
differences in method appear. The three approaches presented
above: the use of the full 7 x 7 covariance mstrix, the trun-
cated 6 x 6 representation, and the 6 x 6 body representation
will now be examined.

The 7 x 7 representation presented in Sec. VII is the most
direct but also the most burdensome computationaily, since
the number of clements in the covariance matrix is largest. A
more significant problem, however, is the need to maintin
the singularity of the covariance matrix, which is of rank 6.
As pointed out in Sec. VIII, round-off errors can iead to
terms which raise the rank of the matrix and even lead to
negative cigenvalues.

The truncated 6 x 6 representation of the covariance matrix
maintains the proper rank but does not resuit in a com-
pwuiational saving. This is true because the fuil 7 x 7 transition
matrix must bs computed at each time and the reiated 6 x6
transition matrix $, computed only at the time of an update.
The burden of reducing the dimension of the
transition matrix canceis the savings resuiting from the im-
plememation of the update equations in a space of smailer
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The 6x6 body representation of the covariance matrix
presented in Secs. 1X and XI preserves the proper rank of the
covariance matrix while simplifying the computation con-
siderably. The transition matrix and the covariance matrix are
computed as 6 x 6 matrices throughout. Of particular value in
this representation is the fact that the ciements of the
covariance matrix have a simple interpretation in terms of
gyro bias errors and errors in the body frame. In
addition, the matrices G and A have a particularly simple
form.

In any Kalman filter impiementation the largest com-
putational burden is imposed in general by the compurtation
of the transition matrix and the contribution of the process
noise to the state covariance matrix. These quantities are not
needed at the same level of accuracy as the state vector and
hence may be computed at much larger intervais than is
required by the state vector propagation. For this same
reason, approximate forms of these quantities can aiso be
implemented.

Appendix: The Matrix Z(4)
The matrix 2(J) defined in Eq. (62) has some very useful
properties which greatly simpiify the computation of the
covariance matrix and the transition matrices. In this Ap-

pendix the foillowing resuits will be proved:
2 =HUDTA)I-Z@E) @] (AN
O(4,19) Z(§(1e) ) mE(G(1)) AlLidy) (AD)
Ay} mTT(q(2))18(014)Z(L,)) (A3

O(1,te) ST )AL ZT(3(16)) +H(NAT (L)  (Ad)

In the above equations the quaternion is assumed to be
deterministic, that is,

d
34(:) = AQ(w)q() (AS)

(1) mO(1,ty) G(2e) (A6)

and, hence, truly corrresponds to §(¢) eisewhere in this
report. However, to simpiify the notation carets will no¢c be
written over ¢ and «. Also, aithough this is not written ex-
plicitly, «» may depend on the time.

To prove Eq. (Al) note that by definition for any three-
vector ¢

Z(d)emQ(e)§ (AD
Differentiating Eq. (A7) leads to
(P e+2U(Pé=R(¢+ Q)G (A3)

Let the value of ¢ at time ¢ to be arbitrary and let the time
development of ¢ be given by

ém(ujcm ~wxe (A9)

Substituting Eqs. (AS) and (A9) into Eq. (AB) leads to
Z(Pe+Z(d) (wlem ~Q(uxe)§+#4D(c)B(w)d (AL0)

It is a simpie matter to prove that
Q(wxe) = =#[Q{(w)Q(c) ~T(c)B(w) ] (All)
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Substituting this expression into Eq. (A10) above, recaliing
Eq. (A7), and noting that e(7) is arbitrary leads directly to
Eq. (Al).

To prove Eq. (A2) examine the quantity

Differentiating this expression and using Eq. (A1) leads to

%C(l.l,) = AQ(W)C(L¢,) (A13)
which may be integrated directly to yield
Cllity) mO(4ty) Cllgoty) (Al4)

But from Eq. (A12)
C(‘o.") 80,‘, (Al’)

and Eq. (A2) foilows.
Equation (A3) follows directiy by applying the reiation

ET(JE(Q) =iy (Al6)
to Eq. (A2).
To obtain Eq. (A4) note that the converse reiation
2(PDET(Q =g ~947 (A17)

applied to Eq. (A2) leads to
O(tuly) (Lowe = (1) 4T (29) ) 3E(G())AlLL4) ZT(G(20))
(A18)
Noting
O(1.19)d(te) 47 (2e) =G(1)47 (1) (A19)
Equation (A4) follows immediatety.
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