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Abatract

Several schemes in current use for sequential
estimation of spacecraft attitude using Kalman
filters are examined. These differ according to
their treatment of the attitude error, namely:
using the complete four-component quaternion;
using a truncated quaternion in vhich one of the
components has been eliminated; or using a
quaternion referred to approximate body-fixed
axes. These aschemes are examined for the case of a
spacecraft carrying line-of-eight attitude sensore
and thres-axis gyros wvhose measurements are cor-
rupted by noise on both the drift rate and the
drift-rate ramp. The analysis of the covariance
is carried out in detail. The historical develop-
ment of Kalman filtering of attitude is reviewed.

1. Introduction

The present report reviews the methods of
Kalman filtering in attitude estimation and their
development over the last two decades. This
review is not intended to be complete but is
limited to algorithms suitable for spacecraft
equipped with three-axis gyros and line-of-sight
attitude sensors. These are the systems to wvhich
ve feel that Kalman filtering is most applicable.

Throughout this report the attitude is repre-
sented by the quaternion. The development of the
Kalman filter for the quaternion representation
vas motivated by the requirement of real-time au-
tonomous sttitude determination for attitude con=-
trol and the annotation of science data. The
quaternion parameterization wvas chosen for several
practical reasons: (1) the prediction equations
are treated linearly, (2) the representation is
free from singularities (thus, the gimbal-lock
situation is avoided), and (3) the attitude matrix
is algebraic in the quaternion components (thus,
eliminating the need for transcendental func-
tions).

The dynamic equations for the spacecraft atti-
tude pose many difficulties in the filter model-
ing. In particular, the external torques and the
distribution of momentum due to the use of rotat-
ing or rastering instrunents lead to significant
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uncertainties in the modeling. For sutonomous
spacecraft the use of inertial reference units as
a model replacement permitas the circumventioz of
these problems. In this representation the angu-
lar velocity of the spacecraft is obtained from
the gyro data. The kinematic equations are used
to obtain the attitude state and this is augmented
by means of additional atate-vector componenta for
the gyro biases. Thus, gyro data are not treated
as observations and the gyro noise appears as
state noise rather than as observation noise.

Ths use of the quaternion as the attitude
state presents some difficulty in the application
of the filtsr equations. This difficulty is due
to ths lack of independence of the four quatermion
components, vwhich are related by the constraint
that the quaternion have unit norm. This con-
straint results in the singularity of the covar-
iance matrix of the quaternion state. The various
wvays to treat or circumvent this difficulty make
up the major part of this report. Each of the
filters discussed predicts the quaternion state in
the same manner as if each component vere indepen-
dent. Different approaches to the update equa-
tions and to the covariance representation and its
propagation give rise to the different methods
presented.

Section 2 of this report reviews the relevest
literature on Kalman filtering as applied to atti-
tude estimation and on related topics. Since the
attituds problem is nonlinear the vehicle fer
optimal estimation is the extended Kalman filter.
which is reviewed in Section 3 without derivatiea.
Attitude kinematics are reviewed in Section 6,
with emphasis on the quaternion representation. A
discussion of gyros used in the model replacemeat
mode and of line-of-sight attitude sensors is pre-
sented in Sectionm 5.

The state esquation and the equation for atti-
tude prediction are derived in Section 6. The
various approaches to the filtering equations are
discussed in the succeeding five sections. Sec-
tion 12 reviews the advantages of the different
methods. Several results of interest have been
gathered in two appendices.

The intent of the present work is to provide a
complete account of what nov seem to be the rele-
vant filtering algorithms rather than to present a
nev approach. An attempt has been made to present
the current methods in a common framework in order
to produce a useful reference for future applica-
tions.



2. Historical Survey

Early Applications of Xalman Filtering

The Kalman filter (1, 2], which was originally
developed as a tool in linear estimation theory,
was soon applied to nonlinear orbital guidance and
navigation problems in the Apol}o program by
Schmidt and his collaborators [3-5). Almost si-
multaneously with Kalman's work, Swerling [6. 7]
developed a recursive theory for satellite naviga-
tion which differed from Kalman's in the treatment
of the process noise and was not carried out as
completely. Standard treatments of Kalman filter-
ing can be found in the review of Sorenson EB and
the textbooks of Jaszwinski [9] and Gelbd [10 .

An accurate and complete historical survey of
Kalman filtering for attitude estimation is not
possible since the earliest applications vere
directed towards national defense and henoe could
not be published in the open literature. The ear-
liest published reference is by Farrell [tt, t2],
who studied the extent to which Kalman filtering
of crude attitude measurements from sun sensors
and magnetometers could provide attitude accuracy
equivalent to that obtained without smoothing froa
more elaborate instrumentation. Farrell repre-
sented the attitude by Euler angles and assumed
torque-free motion in the attitude prediction.
Cherry and 0'Conmor ([13], in their design of the
lunar excursion module autopilot, conaidered se-
quential estimation of the disturbance torques in-
duced by the ascent or descent propulsion systea.
Potter and Vander Velde [14] used Kalman filtering
theory to determine the optimum =mixing of gyro-
scope and star tracker data in an attitude deter-
mination systes. Generally, as remarked by
Sabroff {15], the application of Kalman filtering
to attitude estimation had not shown impressive
resulte up to 1967. Aside from insufficient
study, the lack of real success in applying opti-
mal estimation was caused by the inability ¢to
model the system dynamics accurately.

Continued effort in this area wvas evidenced at
a symposium on spacecraft attitude determination
in 1969, at vhich six papers were presented on the
application of Kalman filtering to this problem.
Poudriat [16] and Arneson and HNelson [17] con=
sidered spin-stabilized satellites, vhile Ribarich
(18] and Lesinski [19] were interested in the
dual-spin case. Pauling, Jaokson, and Brown [20]
and Toda, Heiss, and Schlee [21] studied the Spaoce
Precision Attitude Referenoce System (SPARS), which
used gyro measurements in a model replacement mode
with periodic star-sensor updates. Pauling et al.
[20] ueed the attitude matrix for state prediction
and Euler angles for updates, while Toda et al.
[21] used the quatsrmion for prediction and incre-
mental error angles in the update. Jeokson [22]
aleo coantributed a paper to the syaposium on the
application of nonlinear estimation theory to the
attitude determination problem, an application
fh;i vas aleo studied by Kau, Kumar, and Granley
23].

In a 1971 review of strapdown navigation by
Edwards (24], Kalmen filtering is not trested but
the use of ths quaternion and error angles for

state prediction is discussed. A review article
by Schmidtbauer, Samuelsson, and Carlsson [25]
extends the history to 1973 and contains a class-
ification and discussion of extended Kalman filter
methods for attitude determination, with specific
emphasis on algorithms suitable for onboard compu-
tation.

Attitude Regresentations

The nonlinear aspects of rotational kinematics
are discussed in many texts [26-30]. Approaches
which treat the spacecraft axes as uncoupled (thus
ignoring commutation omrsE have been studied by
Potter and Vander Velde 14], Ribarich [ 18],
Schmid tbauer et al. [25]. and Farrenkopf [(31].
This approximation leads to independent linear es-
timation problems for the three spacecraft axes,
and closed-form expressions for the steady-state
estimation errors can be obtained in some cases
(14, 25, 31]. VUncoupled-axis Kalman filters em-
ploying both gyro data and dynamics modeling have
been used in onboard attitude control systems, in
the NASA Intermational Ultraviolet Explorer and
Solar Maximum Mission [32] spacecraft, for
example. )

Stuelpnagel [33] and Markley [34] discuss
different parameterizations of the attitude that
have been used when the decoupled-axis approxima-
tion is not applicable. Early strapdown naviga-
tion systems used the direction-cosine matrix as
the representation of the attitude [20. 24]. Due
to round-off, quantization, and truncation errors
in the attitude propagation, this procedure re-
sults in an attitude matrix that is not orthogonal
[35, 36]. Various orthogonalisation scheses for
the attitude matrix were developed; but Giardina,
Bronson, and VWallen [36] proved that an optimal
orthogonalization (one that minimizes the sum of
squares of the differences between the elements of
the propagated matrix and those of the orthogona-
liged matrix) requiree a computationally expensive
matrix square root. Because of this problem and
the redundancy of the nine-parameter direction
cosine representation, it has not been widely used
reoently.

The three- eter Euler-angle representation
[26+30, 33, 34) vas used in several early applica-
tions of Kalman filtering to attitude estimation
(11, 16, 17, 19, 20, 23]. However the kinematic
equations for Euler-angles involve nonlinear and
computationally expensive trigonometric funotions,
and the angles become undefined for some rotations
(the gimbal-lock situation), vhich cause problems
in Kalman filtering applications. Despite these
diffioulties, the Euler angle representation con-
tinuee to be used for the attitude estimation of
spinning spacecraft. Stuelpnagel [33] discusses
tvo other three-parameter representations: the
exponential of a 3x3 skew-symmetric matrix (rota-
tion vector representation) and the Cayley para-
aseterization (not to be confused with the Cayley-
Klein parameters). The latter is ivalent to
the Gibbs vector parameterisation (34). Neither
of these representations has found a Kalman fil-
tering application, to our knowledgse. Stuelpnagel
proves that no three-parameter representation can
be both global and nomsingular.



The global nonsingular four-parameter repre-
sentation of the attitude in terms of Euler's aym-
metric parameters, or equivalently the four compo=-
nents of a quaternion, is discussed by many
authors [26-30, 33-37]. Quaternions were invented
by Hamilton [38? in 1843; their use in attitude
dynamics simulations was promoted by Robinson [39
and by Mitchell and Rogers [40]. The attitude ma-
trix computed from a quaternion (as a homogeneous
quadratic function) is orthogonal if the sum of
squares of the quaternion components is unity. If
propagation errors result in a violation of this
constraint, the quaternion can be renormalized by
dividing its components by the (scalar) square
root of the sum of their squares; and Giardina et
al. [36] showed that the attitude matrix computed
from the renormalized quaternion is identical to
the one given by their optimal orthogonalization.
The application of quaternions to strapdown gui-
dance, with error analyses, wvas discussed by
Wilcox [35] and Mortemson [41]. Quaternion
kinematics has_ been the subject of several recent
studies [42-48]. 0f particular concern has been
the best method for_ extracting a quaternion from
an attitude matriz [49-52]. A recent review of

uaiornion relations has been given by Friedland
531).

The advantages of the quaternion parameteriza-
tion have led to its frequent use in attitude de-
termination systems. One example is an attempt by
Lefferts and Markley [54] to model the attitude
dynamics of the NIMBUS-6 spacecraft, which indica-
ted that dynamics modeling with elaborate torque
models could still not give acceptable attitude
determination accuracy. For this reason, most
applications of quaternion attitude estimation
have used gyros in the dynamic model replacement
mode. These include the work by Toda et al. [21]
mentioned above, by the group at TRW for the Pre-
cision Attitude Determinstion System (PADS) [55)],
vhich was incorporated in the attitude determina-
tion system for the High Energy Astronomy Observs-
_tory (HEAO) mission [56-58], by Yong and Headley
[(59] for highly maneuverable spacecraft, by
Murrell [60] in a design for the NASA Multimission
Modular Spacecraft, by Soremson, Schmidt, and Goka
(61] in a square-root filtering application, by
Shuster and coworkers [62-64] for a microproces-
sor-based onboard attitude determination systea,
and by Markley [65] for an autonomous navigation
study.

Gyro Noise Models

The first papers describing statistical models
of gyro drifts were by Novtonnf66] and Hammon [67]
in 1960. Newton considered additive white noise
in the gyro drifts, while Hammon assumed that the
gyro drift rates were an exponentially correlated
random process. Dushman [68] considered a drift
rate model obtained by adding a random walk compo-
nent to Hammon's autocorrelation function. Early
implementations of gyro noise models in Kalman
filters were generally incomplete. Thus, Potter
and Vander Velde [14] include only the random walk
term in the drift rate, while both Pauling et al.
[20] and Toda et al. [21] have only the white
noise term. Farrenkopf |31, 69] considered a gyro
model including all the ¢terms discussed above.
This model was used in the subsequent HEAO sysatem

development [s6, 57].
3. The Kalman Filter

We review in this section the principal equa-
tions for the extended Kalman filter [9, 10] in
order to introduce the necessary notation for the
sections which follow.

The state equation may be written as
$x(8) = £x(e),t) + g(x(t),t) w(t) (1)

vhere x(t) 1is the state vector and w(t), the pro-
cess noise, is a Gaussian wvhite-noise process
wvhose mean and covariance function are given by
Elw(t)} = 0 (2)
El!(t)!'r(t)i = Q(t)s(t~t') (3)
“E” denotes the expectation end "T" the matrix
transpose. The initial mean and covariance of the

state vector are given by

Elx(t )} = X(t)) = x, (4)

Ef(x(t) - x)(x(t) - )7} £ p(s) =B (5)

Prediction

Given the initial conditions on the state
vector and the state covariance matrix, the
ainimum-variance estimate of the state vector at a
future time t is given in the absence of messure-
sents by the conditional expectation

2(t) = Blx(e)IZ(t) = x} (6)

This predicted eatimate satisfies the differential
equation

$o 2(0) = Blglx(e), )] 2 Ax(e),0) (7

vhich we write approximately as
d
e 2(t) = £(3(¢).¢) (8)

Equation (8) may be integrated formally to give
2(t) = o(t,x(t )t ) (9)

The state-error vector and covariance matrix
are defined by

az(t) = x(t) - 2(¢) (10)
P(t) = E{ax(t) ax (¢)} (11)

Neglecting terms which are higher than first order
in the state-error vector and the process noise,
the state-error vector satisfies the diffsrential
equation

S 8x(8) = F(2) ax(t) + G(t) w(%) (12)



where

F(t) ¢ &= £(x,t) (13)

G(t) = g(2(t),¢t) (14)
Equation (12) may be integrated formally to give

t
ax(t)= o(t,t )ax(t)) :}f o(t,t')G(¢t u(t')dt" (15)
t

where ¢(t,t ) is the transition matrix, which
satisfies

%: o(t.t ) = B(t) o(t,t ) (16)
o(to.to) -1 (7

Note that for non-linear agston. o(t,t ) also
depends implicitly onm 3(: which for’notational

convenience will be suppressed.

The predicted covariance matrix satisfies the
Riccati equation

$2(6) = P(OP(e) + P(OFT(2) + a(e)a(£)6T(¢) (18)

vhich may be integrated to give
P(t) = o(t,t,)P(t )eT (¢, ¢ )

¢ Trpoy,T
of 7 ore)a(e el )8R (e )0 (ke dar (19)
t

o

In more compact notation, %, (~) and P (-)

denote the predicted values of the state vector
and state covarisace matrix at time t,, and % (+)

and Pk(’) dencte the same quantities immediately
following a measurement at time 'k' Thus, in
obvious notation

&,'(’) - —.-(tk"l. &(’)' tk)

T
(0)0k +

(20)

Filtering

The measureaent vector at time tk is related
to the state vector by

3. °nx) v ¥, (22)
vhere v the measursaent noise, is a discrete
Gaulaiih white-noise prooess

Ely} - 0 (23)

E" ll - R (24)

kk'

The minimum-variance estimate of X immediate~

ly following the measurement is given by

2.(4) = 2,(-) » K[z - B(& ()] (25)
where the Kalman gain matrix is given by
IR NOTALE NOLEE N (26)

and the measureament sensitivity matrix is given by

an(x)

27
LI XS &

The covariance matrix immediately following
the measurement is given by

Pk(’) - (I-KKHR)Pk(-) (28)

. (T=K, K )P, (=) (1K, ) oK R XY (29)

Equation (29) is the starting point for many
efficient and numer cuily stable factored forms of
the Kalman filter. |70

In the sectiona which follow, the implementa-
tion of the above equations is examined for three
different representations of the attitude estima-
tion problem. In each case, explicit expressions
are developed for the tramsition matrix ¢ and the
sensitivity matrix H. .

4. 6Atti.tmlo Kinematics
In the systems investigated in the present

study the attitude is represented by the
quaternion defined as

[

q = 8 sin(e/2)

(30)

vhere

q, * cas(9/2) (31)
The unit veator fi is the axis of rotation and ¢ is
the angle of rotation. Quatermions will slways be
denoted by an overbar. The quaternion possesses
three degrees of freedom and satisfies the
constraint

(32)

The attitude matrix is obtained from the
quaternion according to the relation



M@ = Gag1? - 1017 15 4+ 237 + 24,(3] (33)

vhere

(3] = f-ay 0 g, (34)
-9 O

This notation will be used generally for any 3x3
skew-symmetric matrix generated from a three-
vector. The convention will be followed that A is
the matrix which tranforms representations of vec-
tors in the reference (usually geocentric iner-
tial) coordinate system to representations in the
body fixed coordinate system.

In contrast to the usual convention for

unjornion composition established by Hamilton
38), the product of two quaternions will be

written in the same order as the corresponding
rotation matrices. Thus,
AQ') A(Q) = A(q'eq) (35)
The composition of quaternions is bilinear,
i-'o.

T eaqa=1{3']a (36)
with

q4 qi 'Qé Q1
- "9y 9 9 9
(3] - L (37)
qZ -q, 9 Q3
“qy "3 =93 9
or
" eq-{a q (38)
with
@) ¥ - q
q} = o3 4 " 2
QW 9 1 s (39)
'q1 "qZ -q3 Q‘
The rate of change of the attitude matrix with
time defines the angular velocity vector, M

g; A(t) = [S(e)] ale) (40)

The corresponding rate of change of the quaternion
is given by

% q(t) = 3 alS(e)) q(v) (41)

vith

) vy
-u, o] w w
a(3) > vo2

uy vy 0 ug (42)
Uy mupy  -ux 0

It will be convenient in later sections to define
the four~component quantity

M
o -[ ] (43)
0

UL = 31 0 Q1) (44)

vhence

If the direction of & is constant over the
time interval of interest or if the “rotation
vector” defined by

88 = rIBE GG av (45)

is small, then the solution of Bq. (41) is

a(teat) = M(88) 3(t) (46)
where
N(s3) = con(|sb|/2) I, - 2BUBEL2) 4(5) (a7)
jael

5. Sensor Ho&ola

The spacecraft being studied is assumed to be
equipped with three-axis gyros and line-of-sight
attitude sensors.

Gyro Models

We use a simple but realistic model for gyro
operation developed by Farrenkopf [31] and applied
to the HEAO mission by Hoffman and McElroy [s7].
In this model the spacecraft angular velocity is

related to the gyro qQutput vector U asccording to
G=u-B-3 (48)
The vector b is the drift-rate bias and 31 is the

drift-rate noise. 7\1 is assumed to be a Gaussian

white-noise process
E{n(t)} =8 (49)
E {7, (3,7 (")} = q,(£)s(t-t") (50)
The drift-rate bias is itself not a static

quantity but is driven by a second Gauasian white-
noise process, the gyro drift-rate ramp noise

AR (51)
with

E ()} =3 (s2)

B [3,(003,7 (¢ = o (0)a(e-t") (53)

The two noise processes are assumed to be
uncorrelated

B {3, (03,7 (¢)} = 0 (54)



In general, ﬁ. 3, ;1. and 32 will be linear com-

binations of the outputs of three or more gyros,
vhich need not be aligned along the spacecraft
axes.

An alternative equation for the drift-rate
bias

S b b n, (55)

gives rise to an exponentially correlated noise
term in the model considered by Hammon (67]. 1In
order to reproduce realistic gyro data, & super-
position of several drift terms, with different
values of the time constant may be needed [68].
Siace relatively persistent drifts are observed in
actual gyro operation, at least one time constant
must be very large. Letting v be infinite, vhich
leads to Eq. (51), is adequate for most applica-
tions.

In the propagation equations to be used in the
Kalman filter, Eq. (48) is assumed to be integrat-
ed continuously. The model thus aseumes that the
gyros are used in a rate mode. In practice, hov-
ever, rate-integrating gyros are used, vhich sense
the spacecraft angular rates coatinuously but are
sampled at discrete intervsls. The spacecraft at-
titude is also propagated at discrete intervals,
equal to either the gyro sampling interval or some
multiple thereof. If the attitude update interval
is auch shorter than the Kalman filter update in-
terval, as it always is in practice, the approxi-
mation of continuous gyro updates will be good.

Line-of-Sight Attitude Sensors

The line-of-sight attitude seasor considered
here is any sensor for which the measured quantity
depends solely 6n the direction of some object in
the sensor coordinate systes. Typical c¢f such
seisors are vector Sun sensors and fixed-head star
trackers.

The direction of a body in the sensor coordi-
nate systea 53 is related to the direction in the
reference coordinate system in according to

Bg = ™M@y (56)

vhere A(3) is the spacecraft attitude and T is ths

seasor alignment matrix. Note that the measure-
ment dependa explicitly on the attitude but not on
parameters such as gyro biases.

It will be assumed throughout thia report that
the sensor measuresents are scalar and uncorre-
lated. In gensral the correlation between the
measureaents is small. VWhen this is not the case
a set of uncorrelated messurements can alwvays be
achieved by choosing a representation in vhich the
measurement covariance matrix is diagonal.

6. The State Equation

The spacecraft attitude stats is given by the

attitude quaternion and the gyro drift-rate bdbias
vector

a(t)
x(t) =, (s7)
b(t)

and thus has dimension seven. The quaternion and
the bias vector have been shown to satisfy the
coupled differential equations

S @) = 7 al@(£)-B(2)-3, (1)) 3(¥) (s8)
e B9 = () (59)

Noting that the matrix function q is linear and
homogeneous in its_argument and defining the 4x3
matrix function z(3) by

a(B)g = =2(3)% (60)

Eq. (58) may be rewritten as

&30 = 3 a@w-BAL) - 3 2(F(e)7, () (61)

Equations (59) and (61) are nov in the same form
as Eq. (1) above.

The matrix £(3) has the explicit form

q =95 9,

()= |5 B Y (62)
“a; q; q,
-af -1 -y

The properties of the matrix z(q) are discussed in
Appendix A.

Prediction

The predicted state vector is defined as tn
Sec. 2 Taking the expectation of Eqs. (59) and
(61) leads, within the approximation of Eq. (O},
to

4 2 .1 32

ﬁ-q-5n(u)q ey

d 3 .

EE-S'U [T ¥
wvhere

weu-b (¢9)

is the estimated angular velocity.
A
From Eq. (64) ve see immediately that b is
constant over the prediction interval. Thus,
«w depends only on u(t) and the initial value of

the state vector. Therefore, Eq. (63) can be
integrated directly to give

a(e) = o(t,t) Ay, (66)

with
%; o(t,t) = -5- a(3(t)) o(t.t,) (67)
(68)

oty ty) = Iy



When the directionm of o(t) is constant
throughout the time interval or the angular dis-
placement of the axes is small, then 6(t,t ) can
be approximated by Eq. (47) above. k

7. The Seven-Dimensional Covariance

Representation
The simplest approach to express the state-
error vector and the covariance matrix is to

define these in terms of the complete state vector
as in Eqs. (10-11) above.

Prediction

The seven-dimensional state-error vector
satisfies the differential equation

S5 8x(2) = F(t) ax(t) + G(t) w(t) (69)
with
r 2 2]
% a(w) § - % 2(q)
F(t) = ‘% (70)
Os24 1 O3x3 |
- i
- E :(Q) E 0483
6(8) = | —mzmmmoebonee m
| Osxe § Daes, |
[ 3,(0)
we) = | . (72)
I nz(t)
and therefore
(8] | O3y
Q(t) - -------‘---—--- (73)
| Om3 | )

F(t) and G(t) are determined straightforwardly
from Eqa. (13), (14), (53), and (61) above.

The transition matrix has the general form

O(t.to) : Y(t.to)

o(t,t ) = (74)

°3x4 13x3

-

Where e(t.to) is given by Eqs. (67-68) above and
Iowte) = §al@le, e Me(e,t) - £ 2(@(x) (75)

subject to
(e .t) = O4x3 (76)

Equation (75) may be integrated directly to yield

1 ot "
!(t.to) - - ';_/; e(t,t') =(q(¢'))at’ ()]
[}

Filtering

Since the measurements are assumed to be
scalar and to depend only on the attitude and not
the bias vector, as discussed in Sec. 5, it
follows that the sensitivity matrix is a seven-
dimensional row vector of the form

He (1, 37) (78)
where
ah 3P,
t1= —.§)= (79)
apg 2a /|a(-)
Define the vector r by
T
te| ko (80)
Ips

then it can be shown that

a - =\* -
Lt = [;ﬁ' P‘A(Q)PR]IE(.)
- 2(F 2 57 = T@(-)) (81)
where
Fp = ME(-)7g (82)

8. Singularity of the Covariance Matrix

The covariance matrix for the seven-dimen-
sional state-vector is singular. This follows
immediately from the,constraint on the quaternioa
norm so that

2’ q = 0 ey

(%]

is a null vector of P(t).

and hence

This singularity is difficult to maintain
numerically due to the accumulation of round-off
error. If fact, P(t) may even develop a negative
eigenvalue. The simplest way to maintain the
singularity is to represent P(t) by a matrix of
smaller dimension. There are three posaible
approaches to accomplishing this, two of which
lead to the same result. The examination of these
three approaches forms the subject matter for the
remainder of this report.



9. Reduced Representation of the
Covariance Matrix

A 6x6 representation of the covariance matrix

is induced by the form of the transition matrix
prescribed above.
Prediction

It can be shown (see Appendix A) that

o(t,t') =(3(t,t)) = 2(3(2)) ale,t') (84)
vhere

At tt) = AGNAT(E(E)) (85)

is the 3 x 3 rotation matrix which transforms the
estimated attitude matrix from time t' to time ¢t.
Subatituting this into Eq. (77) leads to

v(t.to) = 2(q(e))k(e,t) (86)
with

.

K(t,t ) = - f alt,t') de’ (87)
RERS AL

It is also shown in Appendix A that

a(t.ty) = 2(q(e)ale. )2 (G(¢, ) a0t ) (88)

Subatituting these expressions into the oxpt.nnioﬁ
for the transition matrix gives

o(t.t) = SQ(e)F(e,e S (R(2 )

i(t)ﬁ?(to) :.o

-bet ?U;;3
vhere
. 2(q(t)) IL 043
s(q(e)) = Fg ==~ =" {90)
I3 | Ix3
- A(t,t ) ; K(t,t )
o(t,t,) = ““"--*:*I-- -2- (91)
3x3 : 3x3

The second term of the right meaber of Eq.
(89) anninilates P(t,) on the left and P(t) on the

right. Thus, if the 6x6 covariance aatrix P(t) is
defined by

T(e) « sT(3e))PC)S(Te))

this satisfies the integrated Riccati equation of
the form

CORE CXBE CHE L CXW

(92)

t
’f FCe, ¢ )T )L )ET (" )8 (¢, ¢ )at' (93)
t
[+

where

1 !
2.5 %
24752
| "3x3

In obtaining Eq. (93) repeated use has been made
of the equation

F(e) = sT(R(8))6(e) = (94)

(95)

At any time the 7x7 covariance matrix P(t) can
be reconstructed via

p(2) = (3(t)) F(&) sTR(L) (96)
Filtering

The Kalzan filter may also be mechanized using

P(t). Define the 1x6 matrix ﬁ; and the 6x! matrix
ik according to
% - n SE () (97)
R« B(ORIEF RT - r ] (98)
vhere Hk is as in Sec. 8. Then it is easy to show
that '
P(s) = (Tgpe - B B) F() (99)
K ~ S(3, (-0 &, (100)

In implementing this method the 7x7 covariance
aatrix need never be computed, the 6x6 covariance
is propagated and updated using Eqs. (9%) and
(99), respectively. The expreasion for the 1x6
sensitivity u:uiuk can be simplified; but this

expreesion will be derived in Sec. 11, since it
falls out more directly in that approach. That
section contains an independent derivation of the
prediction and filtering algorithms which turm out
to be identical to those presented here.

10. The Truncated Covariance Representation

The modt obviocus approach to reducing the
dimenaion of the covariance aatrix is to delete
one of the quaternion components from the state-
error vector. Ve aay let this be the fourth
component, although in principal any component
could be deleted.

The truncated atate-error vector is then

Y]
e

This state-error vector cannot be treated as
simply as the 7-dimensional state-error vector of
Sec. 8. In Sec. 8, the four components of the
quaternion vere treated as independent variables
with the normalizstion constraint being maintained
by the form of the equation of motion. In the
present case the fourth componeat of the quater-
nion error must be determined from the comstraint

(10%)



according to
aq, = - % §-a3 (102)
4

Thus, partial differentiation must be treated
differently in the two cases.

Prediction
The truncated covariance matrix is defined as
P (t) = E lag(s) ag" ()} (103)
which satisfies

T
Pylt) = o (t,t0) Po(t)) o (t,¢,)

t
* [ ] . L) T [ ] T' [} *
_/: Oy(t.t )Gy(t yals )cy(t )oy(t.t ) dt
° (104)
vhere
e (t,t) 'y (t,t)
ARSI IS SR (105)
Osx3 | Isx3

is the 6x6 transition matrix. G_(t) is defined
below. ¥

oy(t.to) -

The submatrices of oy(t:to) are easily
determined from the corresponding submatrices of
¢(t,t ). This is simpler than attempting to
determine oy(t.to) by direct integration of a

6-dimensional state error equation.

Note thst
3Aqi(t)

[ey(t'to)]ij (m)!‘ (106)
aaqi(t)

[rg(t,t)]gy s ;;;;r;;y y (10m)

vhere the subscript "y" indicates that the partial
derivatives are to be computed subject to the
constraint. No similar constraint exists in the
corresponding expression for e(t,to) and v(t.to).

the constraint being satisfied by the state
equation. Noting this fact leads immediately to

[ey(t'to)lij - [°(t'to)]13

q,(¢) '
-2 [e(t,2)],  (108)
Q4(t° °
(rp(e,e)]yy = [P(et )]y, (109)
and also
[e, (0] = [a(n)], (110)

The 7x7 covariance matrix can be recovered
from Py (t) by comstructing the missing elements

according to

18 a.(t) [P_(8)],, (111)
2 8, gt

E{Aq4(t)Ayl(t)} - - o =

9

EIAq4(t)6q4(t)|

1 N R
) P (112)
|a4(t)'2 i=1 Jé qi(t)[ y(t)]ij q.d(t)

Filtering

Analogously to Eqs. (78) and (79) in Sec. 7
the sensitivity matrix is given by

T
H = [‘,- [ (113)

vhere the 3-dimensional rov vector ly is given by

an /3P

t," —:'(Ts) (114)
s\ Jy |]13(-)

vhich reduces to

(n.y)i ol P (q1/q4)l.4 (115)

and 1 is given by Eq. (81) above.

In implementing the Kalman filter in this case
also the 7x7 covariance matrix need never be
computed. The state-vector is updated by
computing

a3(+) = % (x - W(F-))) (116)

vhere Ky is computed from Py(-) and Hy using Eq.
(26). aq4(¢) is obtained from Eq. (102) and the
updated atate-vector is given by

2(+) = 8(=) + a8(+) (117)

Note from Eq. (102) that truncation can lead
to large errors vhen ﬁ4 is small. This can be

avoided by always deleting the quaternion
component vhich is largest in magnitude.

11, The Body-Fixed Covariance Representation

In this section we develop an approximate
body-referenced representation of the state-vector
and covariance matrix. The quateraion error in
this representation is expressed not as the
arithaetic difference between the true and the
estimated quaternion but as the quaternion which
must be composed with the estimated quaternion in
order to obtain the true quaternicn. Since this
incremental quaternion corresponds almost
certainly to a small rotation, the fourth




component will be close to unity (to second order
in the vector components) and hence all the
attitude information of interest is contained in
the three vector components. Therefore, the six-
component object defined by the vector components
of the incremental quaternion and the drift bias
vector will provide a non-redundant representation
of the state error. This representation will turm
out to be identical to that developed in Sec. 9.

If the infinitesimal attitude error angles are
defined as twice the vector components of the
incremental quaternion, then this treatment
becomes very similar to that employed by several
other authors. [21, 59-65].

Define the error quaternion as

A o

8 " a2 e q (118)

and the six-dimension body-referenced state vector

7 "

From Eqa. (30) and (62) we have that

(119)

- 13} ea- 2@i3) 63 (120)
whence
s = =73 (121)
s, - F (122)
and
T
Q) | 3
I Mg——- (123)
- 3:4 kr}xi] 3
- 87z (124)
From Eq. (95) it thea follows that
) -~ 6
st (2. (125)
%
- &
sf = sT(Q)ag -[ q] (126)
at
Note, however, that although
ax = S(D) a3 (127)
it happens that
¢ 8(F (128)

The results of Sec. 9 may now be derived in short
order.

10

Prediction

€
ol

d =~ 1
12
i_

at '2‘

[ B
F-TR4

it follows immediately that
d - 1 pe- - - <
at 4q = 5-[0 e 8q - 8q @ u]

- - - by 1 = -
83 - 83 8 0] *—6ue 8q
2 2

T
Q

-
-
- 3 x

wvhere

Row
%[3-66-56.3]'[

6a @ 83 = &G + O(}sal}sql)
Thus, neglecting second-order terms

d

- * - 1 S -
“‘q'-UICQ‘IA - n,

d
iy =0

from vhich it follows that the state-error
equation may be writtea

T 4E(1) = F(0AT » B(2) w(t)
where
.3 1
[g(t)] -3
() =

T(t) -

3:3
T is identical to Eq. (94) of Sec. 9.

The traneition matrix may be written as

3 I |
F 3K ----.q...--.-
Ose3 | I3x3
with !

e, = [a(e)] B(t, )

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)



= ¥(t,t,) [;(t)]?(t,to) - %Ik} (142)
subject to
8(ty,t.) = Iygze ¥t ,t) = 0543 (143)
It now follows immediately that
a(t.to) - A(t,to) (144)
- vt ,
r(t.to) - - 5/; A(t,t') dt' = K(t,t) (145)
30 that °
At,t) b K(t,t)
et ) = - 2 (146)
-] o 1 I
3x3 | 313
as in Eq. (91) of Sec. 9.
The covariance matrix is defined as
HOREHOR RO (147)
and from Eq. (127) it followe that
Fe) = sT(E(e)) P(6) S(3(e) (148)
P(t) = S(3(t)) Be) sT(E(e)) (149)

as in Sec. 9, and P(t) satisfies the Riccati
equation

T = FOFOBF (0808 () (150)
vhose integral form is simply Eq. (93).

Filtering
In analogy with the previous sections
He (1, 3]

where the thrse-dimensional row vector £ is given
by

(151)

3h 3D
- _féz.) (152)
Ops O(Gq) %(-)
From .
A(q) = A(e3) A(3(-)) (153)
it follows that
i- (r- — A(aﬁ)zp,,) (154)
a(eq) 2
q(-)
where
Bp = MQ(-D)y (155)

11

Noting that

13) = a 156
A(83) = 1, 4 + 2 [e3] (156)
the differentiation may be carried out immediately

to give

-~ T
I=2(Fx3 (157)
The implementation of these algorithms is
identical to those of Sec. 9. An apparent but not

actual difference is given by the state vector
update vhere

- ‘i(’) -~ -
2%(+) = = K (2 - h(q(-))) (158)
ab(+)
from vhich ve have
2+) = 6d(+) w @ (=) (159)
B(s) = B(-) + ab(+) (160)
with
- 63(0)
8q(+) = (161)
Noting from Eqs. (37) and (60) that
) 3 - i + n(.§>§ (162)
- 3 + !(ﬁ)ei (163)

ws see that this algoritha is identiocal to
isplementing Eq. (100) above.

If instead of the incremental quaternion the
incremental error angles given by

6 = % 0 (164)
ars used, the expreesions simplify somewhat in
that the factors _of 1/% 1/4, and 2 in the
expressions for F(t), Glt), K(t,t.) and 1
disappear. The implementation is otherwise

unchanged.

12. Conclusions

In all the implementations of the Kalman-
filter presented above the propagation of the
state vector is performed identically using Eqs.
(63) and (64). In the propagation the four
components of the quaternion are treated as
independent variables. Vithin numerical errors
the constraint on the quatsraion normaligation is
maintained by the structurs of Bq. (63).

This normaligation can be destroyed by the
accumulation of round-off error and the
linearisaticn approximation inherent in the update
equation. This need not cause concern in the
propagation of the quaternion since this operation
is linear. Care must be taken, however, wvhen the
attitude matrix is to be calculated or wvhea an



update is to be performed. The renormalization of
the quaternion can then be carried out using an
algorithm such as the one in Appendix B.

It is in the propagation of the state
covariance matrix and the update of the state
vector and covariance matrix that differences in
method appear. The three approaches presented
above: the use of the full 7x7 covariance matrix;
the truncated 6x6 representation; and the 6x6 body
representation, will now be examined.

The 7x7 representation presented in Sec. 7 is
the most direct but also the most burdensome
computationally, since the number of elements in
the covariance matrix is largest. A more signifi-
cant problem, however, is the need to maintain the
singularity of the covariance matrix, which is of
rank 6. As pointed out in Sec. 8, round-off
errors can lead to terms which raise the rank of
the matrix and even lead to negative eigenvalues.

The truncated 6x6 representation of the
covariance matrix maintains the proper rank but
does not result in a computational saving. This
is true because the full 7x7 transition matrix
must be computed at each time and the related 6x6
transition matrix .y computed only at the time of

an update. the burden of reducing the dizmemsion
of the transition matrix cancels the savings
resulting from the implementation of the update
equations in a spaoce of smaller dimension.

The 6x6 body reprssentation of the covariance
matrix presented in Secs. 9 and 11 preserves the
proper rank of the covariance matrix vwhile simpli-
fying the computation considerably. The trans-
ition matrix and the covariance matrix are
computed as 6x6 matrices throughout. Of particu-
lar value in this representation is the fact that
the elementa of the covariance matrix have a
simple interpretation in termas of gyro bias errors
and angular errors in the body frame. In addi-
tion, the matrices & and K have a particularly
siaple form.

In any Kalman filter implementation the
largest computational burden is imposed in general
by the computation of ths transition matrix and
the contribution of ths proosss noise to the state
coveriance matrix. Thess quantitiea are not
needed at the same levsl of accuracy as ths state
vector and hence may be computed at much larger
intsrvals than is required by the state-vector
propagation. For this same reason, approximate
forms of these quantities can also be implemented.
These are given in Appendixz B.

Appendix A - The Mstrix 3(q)

The matrix 2(q) defined im Eq. (62) has some

very useful properties which greatly sizplify the
computation of the covariance matrix and the

transition matrices. In this appendix the
following results will be proved.

4 2(3(1) = 3 a(@)3((8)) - 2@(EN[E) (a-1)

o(t,t )2(q(t))) = 2(q(e)a(t,t) (a-2)

12

ACe.t)) = =T (@(6)e (k. )2(als ) (a-3)

a(t ) = =(@(eNale,e )zl @(e ) + AT (x)

(A-4)
In the above equations the quaternion is
assumed to be deterministic, that is
d = ) -y =
e ale) = 7 a(a) q(e) (4-5)
a(e) = elt,t)alty) (A-6)

and, hence, truly corresponds to q(t) elsevhere in
this report. However, to simplify the notation
carets will not be written over a and u. Also,
although this is not written explicitly, S

may depend on the time.

To prove Eq. (A~1) note that by definition for

three-vector ¢

any
z(3)e = a(e)q (a=7)
Differentiating Eq. (A-7) leads to
()T + (e = a(3)7 + a(3)7 (4-8)

Let the
let the time development of ¢ be given by

value of ¢ at time t be arbitrary and

g=[3]8--0x2 (a=9)

Substituting Eqs. (A-5) and (A-9) into Eq. (A-8)
leads to

2(3)¢ + eV Yt

- -a(@xd)F + § a(3)a(dN Y-
It is a simple amatter to prove that
a(ixd) = - Ha(@)a(D-a(a(d)] (hmtr

Substituting this expression into Eq. (A=-10),
above, recalling Eq. (A-7), and noting that c(t)
is arbitrary leads directly to Eq. (A-1).

To prove Eq. (A-2) examine the quantity

c(t,to) s e(t,to)s(a(to)) - E(E(t))h(t.to) (A=12)

Differentiating this expression and using Egq.
(A=1) leads to

2 <) o
35 C(t8,) =~z aw)e(e,t) (A=13)
which may be integrated directly to yield
(A-14)

c(t.to) - O(t.to)C(to.to)



But from Eq. (A-12)

c{t ,¢) =0 (A-15)
o o0

4x3
and Eq. (A-2) follows.

Equation (A-3) follows directly by applying
the relation

:T(3)2(q) = 1 (A-16)

3x3
to Eq. (A-2)

To obtain Eq. (A-4) note that the converse
relation

2@=T@) -1, - @ (A-17)
applied to Eq. (A-2) leads to

oty )T, , - A(s) 3°(£))

- 2(@(£)ale,t )= (3(¢,)) (a-18)
Noting

o(t,t )a(t,)q T(t ) = q(6)3(¢) (A-19)

Equation (A-4) follows immediately.

Appendix B - Numerical Considerations

Ve will only consider quantities in the
body-fixed representation since computations are
easiest in this representation. If desired, these
results can be transformed into the other
representations.

Tranaition Matrix

The rotation matrix is given by Eq. (85)

A(t,t) = A(ﬁ(t))AT(ﬁ(to)) (B-1)

which requires only a matrix multiplication, since
the attituds matrix is required at the update
times for observation processing. The second
mntrix factor on the right is ths transpose of

A(q (+)), while the matrix that is computed is
A(q -Nn.

AE,(*)) = AL6T DA (-))

These are related by

(B-2)

where sq is the incremental quntornion at time
t,, and Eq. (156) can be used for A(cq ).

The K matrix is given by Eq. (87)

t
K(t.to) - -;-./; A(t,t') de’ (B-3)
-]

This integral cannot be computed in real time

since the rotation matrix must be known for t>t’.
This objection can be removed by writing

A(t.t')'A(t.to)A(to.t') - A(t.to)AT(t'.to) (B-4)
vhich gives

t
K(t.to) - - -’5 A(t.to)./t‘ AT(t'.to)d:' (B-5)

Real-time computation and integration of the
rotation matrix is quite expensive and can be
avoided if an approximate form of K is adequate.

this is derived by assuming that o is constant
over the interval and that Iﬁl(t-to) is small.
Then, ignoring cubic and higher terms

A(t.t") o Iy [B)(emtt) % (312(e-t)2  (3-6)
Substituting into Eq. (B-3) and integrating gives

! 12
K(t,t)e= 5{t=t )1y 5 + 5 [8](t-t)

7 (8] (4=t ) ] (8-T)

Comparing this with the symmetric and skev-symmet-
ric parts of Eq. (B-6) gives

K(t, to)em gp{t=t )[BI, (+5a(t,t)-aT(t,t )] (3-8)

This is convenient for computation since the
matrix A(t,t)) has already been computed.

Process Noise

The contridbution of the process noise to the
state covariance matrixz is given by the second
tera of Eq. (93

Ld t~ - -~
R(t.to):/: St 6 e )0 )BT ()7 (1, 8 )ae?

IR RR CRR
12(t ty) | Tpp(tety)
where 1
t
Ty (ttg) = [ [aGeee (e (5e)
]
ox(t.t')Qz(t')k"(t.t')]dt' (B-10)
t
,2(t.t°) -_/; K(t.t')Qz(t')dt' (B-11)
[+
- t
R z(t.t ) -f Q, (¢t )de’ (B-12)
Equation (B-12) nuod not be simplified. Substi-

tuting Eqs. (B-3) and (B<4) into Eqs. (B-10) and
(B-11) and changing orders of integration give



s 1 t T [ ] ~ 1] 1]
“TZ(t'to). - ?(t.to)f A (e .to)sz(t .to)dt
t, (B-13)

- t ~
N‘1(t,t°)- %ﬁ(t'tOZI: AT(t',to)[01(t')-2N12(t'.t°)
0
-2312T(t'.to)]A(t'.to)dt' A(t.to) (B-14)

When, in addition to the approximations of
Eqe. (B-6) through (B-8) it is further assumed
that Q,(t) and Q,(t) are time independent, the

above expressions simplify to

~ 1 T
By (gt )e gglemt a1, gon(e, e )-a (2,2 ) ]Q,
saa(t,t Q7 (¢, )]

Seatt-t ) 10301, eriae, e )-Ta" (5,8 ) o,

’GA(toﬁo)QzAr(t.to)] + transpose (B=15)

L4 1 2 T
M (t,t Jam o5(tet ) ['01313’35(t-t°)-A (t.to)]o2
. (B-16)

i'.‘,z(t.to) = (t-t ) Q, (B-17)

Normalization of the Quateraion

In general, the unit normalization of the
quaternion will not be maintained due to the
accumsulation of round-off error and spproximations
vithin the filter.

The lest can be eliminated most easily in Sec.
11 by replscing Eq. (161) by

- ‘; +)
8q(+) = A (B-18)
cq‘(*)
with
03,(+) = 1 - Had(+))? (3-19)

vhich has been used by other authors. The
normalization is now preserved to order

s 4
leq(+)|".

The simplest method to eliminate round-off
error (or otherwise restore the norm) is to
sultiply the quaternion periodically by the factor

(3 + 3T/0 + 3359 (8-20)

If the error in the norm before multiplication is
€, it will be reduced after multiplication to

order 03/32.
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