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[ - Introduction

This paper describes methods for determining spin-axis attitude
(i.e., the direction in space of the spacecraft spin axis) and
magnetometer biases which are being investigated for ground support of
the Active Magnetospheric Particle Tracer Explorer (AMPTE) mission.

The AMPTE mission will consist of two spacecraft.1 The first is the
Ion Release Module (IRM), provided by the Federal Republic of Germany,
which will be placed in a highly elliptical orbit with apogee at
approximately 19 Earth radii in order to release lithium tracer ions
outside the magnetosphere. This spacecraft will be spin stabilized at a
rate of 30 rpm. The second spacecraft is the Charge Composition Explorer
(CCE), which will detect the tracer ions inside the magnetosphere at
altitudes of from 300 km to 7.5 Earth radii. The CCE will be spin
stabilized at 10 rpm.

Estimation of spin-axis attitude for both AMPTE spacecraft will be
based on the measurements of the geomagnetic field and the projection of
the Sun line on the spacecraft spin-axis, which we take nominally to be
the symmetry axisjA of the spacecraft bus.

For the purpose of this study, the attitude sensors are assumed to
consist of a three-axis magnetometer and a Sun sensor which measures the
angle between the Sun Tine and_}A. For simplicity it is assumed
likewise that one axis of the magnetometer is along.}A. The other

two axes of the magnetometer define X, and Z,.
The measured quantities are taken to be
M = magnetic field vector in body coordinates

cos B = §52A’ where S is the unit vector directed from
the spacecraft to the Sun (8 is the "Sun angle").



Attitude determination activities fall into two areas:

. Determination of spin-axis attitude
. Determination of the magnetometer biases

Because the orbit-apogee distance for these two spacecraft is so
great, accurate geomagnetic field data for attitude estimation is
available only for the segment of the orbit near perigee. This is due to
the poor accuracy of the magnetic-field model at such high altitudes
resulting from both the small magnitude of the geomagnetic field as well
as from fluctuations in the field caused by extraterrestrial phenomena.
However, because of the large spacecraft angular momenta, it can be
assumed for both spacecraft that the spin-axis attitude at apogee will
not differ markedly from that at perigee of the same orbit.

Algorithms for spin-axis attitude and magnetometer bias
determination are now being investigated. These are:

. attitude-independent estimation of three-axis
magnetometer biases and

. estimation of spin-axis attitude from measurements
of the Sun and geomagnetic field angle.

Each of these algorithms are batch estimators utilizing a long segment of
magnetometer and Sun data. The algorithms are developed in succeeding
sections and then tested using simulated AMPTE data.

II - Magnetometer Bias Determination

The attitude of the spacecraft is usually not known before the
magnetometer biases must be determined. Here an algorithm is developed
which determines the magnetometer bias vector by minimizing a Toss
function which is independent of the attitude.



The quantities used throughout this section are defined as follows:

Hj(i) = jth component of the model magnetic field in the
geocentric inertial (GCI) system at time i

Mj(i) = jth magnetometer reading at time i

Bj = jth component of the magnetometer bias vector, which

is taken to be independent of the spacecraft

position
For the ith point, an error 6(i) is defined by the following equation:
A 2 . 2
§(i) = |H(1)]° - |m(i) - g (1)

The objective of this equation is to minimize the quantity &(i) by
adjusting the bias vector B to its optimal value. Thus, the Toss
function to be minimized is given by

N
e - L w(1)[8(1) | (2)
1=

where w(i) is the weight associated with the ith data point. The weights
are assumed to be normalized to unity, that is,

N
L w(i) =1 (3)
i=]
Determining the minimum value of L(B) first requires that its
derivatives with respect to the components of the bias vector be set
equal to zero:

LU m=1,2,3 (4)



where

L _ N ol 2 2 .
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m

Combining Egs. (3-5) leads to the following results:

(\/!.d

k=1 mk k * Fm('B') (66)
or in matrix form,
GB=b+ F(B) (6b)
where
=8 (<[HI? - <|M]>) -2 MM (7a)
Gk mk I-—' - I-' ' m 'k
2 2
by = <(|H]" - M| My (7b)
Fa(B) = B <B, - Mp> - 2 BB, (7c)

The bracket denotes the weighted average
N .
<A = ) w(i)A) (8)
i=1

émk is the Kronecker delta defined as unity when m=k and zero

otherwise.

Eq. (6) can be solved directly to obtain the best value for the bias
vector 8.



General Description of the Iterative Solution

Eq. (6) is nonlinear in B and must be solved iteratively. The
zero-th order (trial) solution to Eq. (6), is obtained by dropping the
nonlinear terms in comparison to the linear terms. This approximation is
valid only when the bias is small in comparison with the actual magnetic
field. This point is not critical, as the iteration scheme constructs an
accurate solution even when the trial solution is not close to the true
solution. This will be discussed in more detail in the treatment of the
numerical example.

The trial solution is given by

80 =gl (9)

1

where G~ inverse of the matrix G

5(0) trial solution

This solution may be iterated as

,ﬁ(j) = 2(0) . G'lf(g}j'l)) i1 (10)

The iteration continues until

. =)
IBISJ) - B'SJ )

. < € (11)
B

where € = some arbitrarily small value depending on the accuracy
desired, .



Numerical Examples

The AMPTE engineering data simulator? was used to generate biased
magnetometer data for the purpose of investigating the convergence
properties of the iterative solution. Two cases were considered:

B/HC1

and
B/H»1

The first case considered was B/H € 1; in this case, 200 data points
were used in the calculation. Data at the perigee point, at which the
magnetic field attains its maximum value, was included. The magnetic
field can be resolved into a component along the AMPTF spin axis, H,, and
a component perpendicular to the spin axis, Hl' The maximum or perigee
values for these components are ﬂTﬁx = 240 milligauss (mG) and
HTAX = 90 mG. The input biases were chosen to be 5 mG, 10 mG, and 15 mG
along the x, y, and z axes, respectively. The results of the bias
determination calculation are shown in Table 1 taken from Reference 3.
Rapid convergence and very high accuracy is obtained. The trial solution
g(o) (iteration 0) initially was not accurate in the y component and
needed to be iterated to obtain satisfactory results. Investigation of
the case in which B » H used a subset of the data used in the first
test. Here, 100 data points well outside the perigee region were used.
For this test, HT?X = 5 mG and HTAX = 2 mG. As before, the input biases
are 5 mG, 10 mG, and 15 mG. These results® are presented in Table 2. In
this case, convergence is very slow and incomplete. Improved convergence
cannot necessarily be obtained by using standard Mewton-Raphson

techniques.



ITERATION LOSS
0 54821.0 5.00288 12.0278 15.0213
1 5183.0 498344 9.38109 14.9473 .
2 370.0 5.00481 10.1647 15,0152
3 290 4.99870 9.95352 14.9959
4 2.0 5.00037 10.0128 15.0012
5 0.2 4.99980 9.99638 14.9997
6 0.01 5.00003 10.0009 15.0001
Table 1
Bias Determination Calculation for B/H €1
(TERATION Loss
NUMBER FUNCTION 8, (ma) 8, (mG) 8, ImG)
0 24100.0 18 23 53
10 1480.0 37 55 119
20 501.0 41 8.1 124
20 2400 4 83 13.1
40 133.0 45 6Ss 138
50 81.0 48 68 139
Table 2

Bias Determination Calculation for B/H > 1



III - Spin-Axis Attitude Determination

Once the magnetometer biases have been chosen properly, data from
the Sun sensor and the magnetometers may be used to determine the
spin-axis attitude. It is assumed that the spin axis is not varying over
the data interval examined.

The spin axis is denoted by é. The data are

B(i) = measured Sun angle at time i 1‘=1,...,NS

M(i) = measured magnetic field at time i, 1'=1,...,NM

‘é(i) = (true) Sun vector in GCI at time i, 1'=1,...,NS
measured from the spacecraft to the sun

H(i) = (true) geomagnetic field at time i, 'i=1,...,NM

Note that there will be no requirement of simultaneous Sun-sensor and
magnetometer data.

The spin-axis (attitude) vector, 3, is subject to the following
constraint:

asa =1 (12)

The spin-axis vector is chosen to minimize the following loss

function:
Ns
U8 =7 L ug) [ad0n) - cos 8(n)|? (13)
My
3 T [ oo 07 -3 ik
1=



where

A = Lagrange muitiplier chosen to satisfy the constraint
equation
uS(i) = weight assigned to the ith Sun sensor measurement

weight assigned to the jth magnetic field

ay(d)
measurement

The quantity n is the angie between the geomagnetic field and the
spacecraft spin axis given by

n = cosTH(M /|H]) (14)

The weights are normalized to unity

e o 1 <
wo{i) + w, () =1 15
W (1) W (1) )

The spin-axis vector a is chosen to minimize the loss function

LU (16)

m

The derivative of the loss function is given by

aL s
= 1_51 we(1) (a-5(1) - cos 8(i)) S (1)
(17)
Nm
+ ﬁ w(1) (a+M(i) - cos n(i)) H (1) = .

i=1



The solution to Eq. (16) may now be written as:

kgl(Amk - J\Gmk)ak = by (18)

wheré
Amk = <Smsk>S + <Mka>M (19a)
bm = <cos B Sm>S + <cos N ﬂ“>M (19b)

and- the brackets denote weighted averages over the magnetometer and Sun
data. That is,

Ns
€D = 1 we (1) CJ.('i) (20)

IS~ 4o
Eq. (18) may be written in matrix notation as
(A-XI)a=pH (21)

where [ is the unit matrix,

Attitude Solution

A general solution to Eqs. (18) and (19) is constructed in this
section. The solution to these equations leads to the spin axis attitude
in the Geocentric Inertial (GCI) coordinate system. Again an iterative
procedure is developed to construct a numerical solution to the
equations. An approximate solution to the problem is to take A = 0,
i.e., to relax the constraint that a be normalized to unity. Given this



approximation, Eq. (18) may be solved to obtain

a0 o plp (22)

Note that this vector is not normalized. In practice this solution will
be very close to having unit norm since even with A = 0, é_is overdeter-
mined in general by £q. (18). Thus, normalizing gf
very good approximation for‘é (see Ref. 4). An exact numerical solution
is generated by solving for A iteratively starting with a trial solution

0) will lead to a

A =0 and 3(0) given by Eq. (22).
Define the function f(A) by

f(A) = a(2)-a(r) -1 (23)

Given the numerical value of a(A), the Newton-Raphson method is used to
determine A, Differentiating Eq. (23) gives

T-0-3 (242)
and
%} = (A -2t g (28b)

The Newton-Raphson scheme gives

NONINCRIN )

: (25a)
%;(A(J-l))

.a_(j) = (A - J\(J.)I)'lg (25b)



Numerical Example

The spacecraft orbit in this example is of the AMPTE type, and the
Sun and magnetometer data used covered the perigee point. The data is
perfect (uncorrupted by random error) as generated by the AMPTE
simulator, The "true"” value of the right ascension, a, and declination,

§, were chosen to be

159.67 deg (26a)

R
[[]

O»
]

0.0 deg (26b)
The zero-order result as given by Eq. (22) was
a = 159,55 deg (27a)
§ = 0.073 deg (27b)

in very good agreement. After ten iterations, the values changed only
slightly, as expected, namely

a = 159,76 deg (28a)
§ = 0.062 deg (28b)

IV - Conclusions

Efficient and reliable algorithms have been developed for spin-axis
attitude and magnetometer bias determination for the AMPTE spacecraft.
Using simulated numerical data it was demonstrated that the methods work
well for AMPTE mission parameters. The present work does not address
problems associated with noise, data rate, sensor misalignments and etc.
These problems were investigated in references (3) and (5).
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