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Two computationally efficient aigorithms are presesied for determining three-axis attitude from twe or more
vector observations. The first of these, the TRIAD sigorithm, provides a deterministic (i.c., noneptimal)
solution for the attitude based oa twe vector observations. The second, the QUEST aigerithes, is sa optimal
sigorithm which determines the attitude that schieves the best weighted overiap of an arbitrary sumber of
reference and observation vectors. Amaiytical expressions are given for the covariance matrices for (he twe
sigorithms using a fairly resiistic medel for the messuremest errors. The maihematical reiationship of the twe
sigorithms and their relative merits are discusesd and mumerical exampiles are given. The advantage of com-
puting the covariance murix in the body frame rather than in the inertinl frume (e.g., in terms of Euler angies) is
emphasized. Thess resuits are vaiuable whea a singie-frame attitude must be computed frequently. They will also
bcud-llom-hlo-aﬂyuormnmlormwmolh-mmorol
attitnde sccurscies for different attitude sessor configurations.

I. Imtroduction
RECURRENT probiem in spacecraft attitude deter-
mination is to determine the attitude from a set of vector
measurements. Thus, an orthogonal matrix A4 (the artitude
matrix or direction-cosine matrix) is sought which satisfies

AV, =W, (im1,....n) m

where 7,,.... 7, are a set of reference unit vectors, which are
n known directions (e.g., the direction of the Earth, the sun, a
star, or the geomagnetic field) in the reference coordinate
system, and W,,..., W, are the observation unit vectors,
which are the same 7 directions as measured in the spacecraft-
body coordinate system. (In general, unit vectors will be
denoted by carets.)

Because both the observation and the reference unit vectors
are corrupted by error, a solution for 4 does not exist in
general, not even for n= 2, This work studies two approaches
to this probiem: one deterministic and the other optimai.

The deterministic method, the TRIAD algorithm,'
determines the attitude by first discarding part of the
measurements so that a soiution exists. Because the aigorithm
is very simpie, it has become the most popuiar method for
determining three-axis attitude for spacecraft that pro\nde
compiete vector information. The aigorithm has been in
existence for at least a decade and has been impiemented in
many recent missions. These have included Smail Astronomy
Satellite (SAS), Seasat, Atmospheric Expiorer Missions
(AEM), and Magsat (for coarse definitive attitude) and will
include the Dynamics Expilorer (DE) missions.

However, whereas the computation of the TRIAD attitude
matrix is very simpie and straightforward, calculations of the
attitude covariance matrix as currently impiemented? have
been rather compiicated, often requiring the computation of
numerous partial derivatives as differences. To caicuiate these
partials, the number of computations which must be per-
formed is usually many times greater than the number
required for determining the attitude. Therefore, a simple
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analytical expression for the covariance matrix of the TRIAD
attitude would be very useful. The derivation of such an
expression is one of the goais of this paper.

The greatest drawback of the TRIAD algorithm is that it
can accommodate only two observations. When more than
twO measurements are available, these can be utilized only by
cumbersomely combining the attitude solutions for the
various observation-vector pairs. In addition, even when there
are only two observations some accuracy is lost because part
of the measurement is discarded.

These two drawbacks are usually not present in an optimai
algorithm, which computes a best estimate of the spacecraft
attitude based on a loss function which takes into account all
n measurements. Optimal aigorithms, however, are usually
much slower than deterministic algorithms. For the present
work the chosen loss function is

L(A)séZa,lW,-Al"iI’ @

LX)

which was first proposed by Wahba’ in 1965. Davenport (see
Ref. 4) has shown that this quadratic loss function in the
attitude matrix could be transformed into a quadratic loss
function in the corresponding quaternion. This is a great
simpiification of the probiem posed by Wahba since the
quaternion is subject to fewer constraint$ than the nine
elements of the attitude matrix. Davenport's substitution
leads directly to an eigenvalue equation for the quaternion.
This eigenvalue equation, as elaborated by Keat,* is the basis
for the work presented in this paper.

It is possible to develop an approximation scheme* that
permits the computation of the optimal quaternion to ar-
bitrarily high accuracy without having to solve the compiete
cigenvaiue probiem expiicitly and with a significant reduction
in computation. This algorithm, QUEST (QUaternion
ESTimator), maintains all the computational advantages of a
fast deterministic algorithm while yielding an optimal resuit.
A simple analytical expression also can be obtained for the
QUEST covariance matrix.

The quaternion eigenvalue equation of Davenport and Keat
was first implemented in ground support software for the
High Energy Astronomy Observatory (HEAO). Because
attitude is computed typically only ten times daily for the
three spacecraft of the HEAO mission, the compiete solution
of a four-dimensional eigenvalue probiem did not pose a
significant computation burden. The QUEST aigorithm was
deveioped for the Magsat mission, where fine definitive at-
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titude must be computed every 0.25 s for the life of the
mission using as many as three sensors. For Magsat the
reduction in computation made possible by the QUEST
ajgorithm is substantial.

1t turns out that a simple connection exists between the
TRIAD and the QUEST aligorithms. This connection is
derived rigorously, and the relative merits of the two
algorithms are discussed.

An important point, which is siressed throughout this work
for both the TRIAD and the QUEST aigorithm (in fact, for
any aigorithm), is that the preferred frame for computing the
artitude covariance matrix is the spacecraft-body frame. This
is true not only for ease of computation but aiso for ease of
interpretation. It is possible for the spacecraft attitude to be
accurately determined while the variances, when referenced to
nonbody axes, are quite large. These points will be made
clearer in the two sections which follow.

II. The TRIAD Algorithm

The Attitude Matrix
Given two nonparallel reference unit vectors ¥, and ¥, and

the corresponding observation unit vectors W, and W,,
we wish to find an orthogonal matrix A which satisfies

AV, =W, AV,=W, 3
Because the matrix A4 is overdetermined by the above
equations we begin by constructing two triads of manifestly
orthonormali reference and observation vectors according to

Fav, Fym (P, x V) /W, x P,

Fr= (P, x (P, x V) \W,x V,1 (@)
§=W, = (W, xW,)/ W, x W,|

S;= (W, X (W, xW,))/ W, x W,| )

There exists a2 unique orthogonal matrix 4 which satisfies

AF, =35, (i=1,2,3) ®)

which is given by

7
A=) §FT ™
iwnf
where T denotes the matrix transpose. (7, is interpreted as
a 3 x | matrix and 77 as a 1 x 3 matrix.) In other notation Eq.
(7) is identical to

A=M M, (8)
with

Mm=[il-"‘z“’l 9

The right members of Egs. (9) are 3x3 matrices labeled
according to their column vectors. Equation (7) or,
egquivalently, Eq. (8) defines the TRIAD soiution.

A necessary and sufficient condition that the attitude
matrix given by Eq. (7) also satisfy Egs. (3) is

v, V,=W,-W, 10)
The TRIAD solution is not symmetric in indices | and 2.

Clearly, because part of the information contained in the
second vector is discarded, the TRIAD solution will be more
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accurate when (W,, v ;) is chosen to be the observation-
reference vector pair of greater accuracy.

The TRIAD Covariance Matrix

Conventionally, the attitude covariance matrix is defined as
the covariance matrix of a set of Euler angles which
parameterize the attitude. This turns out to be very cum-
bersome to caiculate and in many ways less informative than
the covariance matrix of a set of angles which are referenced
to the body axes. We shall develop first the formalism for the
body-referenced covariance matrix and then show the con-
nection to the covariance matrix of the Euler angles.

The error angle vector

is defined as the set of angles (measured in radians) of the
small rotation carrying the true attitude matrix into the
measured attitude matrix. It is assumed that 8¢ is unbiased so
that the true attitude matrix is also the expected mean to first
order in the angies, which are assumed to be smail. Thus, to
first order

A= | -8, I 8, |4 (12)

where the brackets denote the expectation vaiue.
The Cartesian attitude covariance matrix is defined as

Py =(50807) 13)

For the purpose of computation, however, it is convenient to
examine a related covariance matrix defined as

P=m(8A8AT) (14)

where
AmA—-(A) (15)

From Eq. (12) it follows that P and P, satisfy
Py= (¥ tr PYI-P (16)

where tr denotes the trace operation and / is the identity

matrix. Because a simple expression is available for A4,

nameiy, Eq. (8), Pis the quantity most readily calculable.
From Eq. (8) it can further be shown that

Pm (oM ML, ) +ABM M HAT an
or
P=p  +AP AT (18)

Similarly, P,,, and P, can cach be written as the sum of two
terms, each generated by the variation of a single observation
or reference vector. .

Because the vectors V,, and W,, are constrained to be unit
vectors, the error in any one of them must to first order lie in
the plane perpendicular to that vector. Thus, to lowest order
inéW,, and 6V,

oW, -W,=0 vV, V,=0 (m=12) (19)
The error vectors 6W,, and 8V ,,, therefore can have only two
degrecs of freedom. We make the further approximation that
the error vector has an axially symmetric distribution about
the respective unit vector. 1n terms of the covariance matrices
of the error vectors (assumed to be uncorreiated with one
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another), this approximation reads

(SW  5WT) =03y by (1= W, W) (mn=12)
6V nbVTy =08 b (I=V, PT) (m,n=1,2)

6V, WTy=0 (m,n=1,2) (20)
where g% is the variance of a component of X along a
direction normal to (X).

For a vector sensor with a limited field of view this
assumption on the error distribution, namely, that the error
along each sensor axis is roughly the same, is usuaily the case.
For a sensor with an extended field of view (e.g., a sun sensor
with a haif-cone angie of 70 deg), Egs. (20) will sometimes be
a poor approximation when the measurement falls near the
edge of the field of view. This is due both to geometrical
effects and to deficiencies in the hardware. However, even in
these limiting cases, the approximation of Eqs. (20) seidom
fails badly.

Noting that

J
Pow= ), (35,86T) @n

=/

the calculation of P, is simplified by using the reiation
. 1 .
oS, = — (I—5,5T)ds, (22)
Is |

where s; is an unnormalized vector given by Eqs. (5) but
without the denominator. The calcuiation of P, is lengthy
but straightforward, and the expression for P, is identical in
form. From these, P and P, may be calculated to yield in
terms of the triad vectors

1
2 —gd s T
P,,a[(a,-'-ag) LT AL a*}]s,s,
cr A (W,-Wy) ..
+0i (Sz‘?'*‘,‘{) -62/ -ITV-’IX—W?T (S(S?'PS,‘{) (23)
oimai, +0iy, o3 maiy +0%y 249

and the approximation has been made that
V, V, =W, W, (25)

Equation (23) may be rewritten in terms of the observation
vectors as

1 . -
Py=ail+ LA AL [(of =0 W, WT
+od (W, -W,) (W, W]+ W,WT)] (26)

which is the desired expression.
The inverse covariance matrix, sometimes called the in-
formation matrix, has the equally simple form

1 . s Il .
P,‘,’=;7,(I—W,Wﬂ+§s,s',’ 2n
where
S,m (W, x (W, x W;))/ W, x W, (28)

Compatation of the Covariance Matrix
for the Euler Angles

In many applications, it is not the covariance matrix of the
error angies (66,, 46,, 58,), measured about the body
coordinate axes. which is sought but rather the error
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covariance matrix associated with a given sequence of Euler
angies® (o,, ¢, ¢;), which parameterize the spacecraft
attitude. The error covariance matrix for a set of Euler angles
may be obtained from P, by noting that the error in the
attitude matrix is given by

bA= | -8, O #, |A 29

& A
8A — O 30
= im] “, ' ( )

To simpiify notation, A has been written in place of (A).
This is, in fact, correct to iowest nonvanishing order in 5A4.
Comparing the marrices of Egs. (29) and (30) element by
element and solving for 64 leads to
“3 (H(¢]r¢)|¢3)] -I“ (31)

and the matrix A -/ is given by

! dA
H-!]. =- —_—A T]
[ ]‘/ 2 ; EM’l[ ao}_ &l (32)

where ¢, is the Lévi-Civita symbol. If 4, is the kth column
vector of A, then the right member of Eg. (32) can be
rewritten as

The covariance matrix in the Euler angies is then
Po=(S6beT)=HPHT 33

It should be remarked that aithough covariance matrices
are computed most often in terms of the Euler angies, the
Cartesian error covariance matrix P, is more useful. in
particuiar, because the Cartesian error angles (84,, 44,, 66,)
form a vector, P, is a tensor of rank 2. Thus, an orthogonal
transformation of the observation vectors induces a
corresponding orthogonal similarity transformation on P,,,
while an orthogonal transformation of the reference vectors
leaves P, unchanged. In comparison, the transformation of
P,, is much more complicated. Also, the trace of P, provides
a convenient scaiar quantity for judging the root-sum-square
accuracy of the attitude solution, which is independent of the
choice of representation and the attitude. P,, yields no
comparable quantity. Finally, aithough P, is attitude in-
dependent, P,, is very strongly dependent on the attitude
through A. Thus, very large vaiues of P, need not mean that
the attitude is poorly known.

The resuits of this section are compietely general and are
not specific to the TRIAD algorithm. Thus, Egs. (31-33) give
the connection between the Cartesian error angies and the
Euler angies for any attitude determination aigorithm. In
particular, Eq. (33) can be used to reconstruct P, from P,
when only the latter is known.

III. The QUEST Algorithm
The Quaternion Eigenvaive Equation§
We wish to find an orthogonal matrix A, that minimizes
the loss function

I & " -
L(A).—.-Ea,lWI-AV,I’ (34)

=

TThe remainder of this paper 1s the work of the first author.
$The denvation here follows closelv that of Ref. 4.



JAN.-FEB. 1981

where the a;, i=1,...,n are a set of nonnegative weights.
Because the toss function may be scaled without affecting the
determination of A, , it is possible to set

a;=1 (35)
The gain function g (A ) is defined by

glA)y=1-L(A)=Y a,WTAV, (36)

1=

The loss function L (A4) will be at 2 minimum when the gain
function g(A) is at a maximum. All further discussion will be
directed at finding the optimal attitude matrix A4,,, which
maximizes g(A ). Interpreting the individual terms of Eq. (36)
as | x | matrices, it follows from a well-known theorem on the
trace that

g(A)= Y au(WIAV,] =t (ABT] (37

im{

where tr denotes the trace operation and B, the attitude profile
matrix, is given by

Bm= Ea, " A% (38)

1=

The maximization of g(A4) is complicated by the fact that
the nine elements of A4 are subject (o six constraints.
Therefore, it is convenient to express A4 in terms of its rejated
quaternion.

The quaternion § representing a rotation is given by*

_ { Q} Xsin(6/2) }
q' =
q

cos(6/2)
where X is the axis of rotation and 0 is the angie of rotation
about X. The quaternion satisfies a single constraint, which is

(39)

GTG= Q12 +q’ =1 (40)
The attitude matrix A is related to the quaternion by#
AQ)=(q°-Q-Q)I+20Q07 +2¢Q @1

where / is the identity matrix and Q is the antisymmetric
matrix given by -

o= -Qs 0 Q, (42)
QJ - Ql 0

Substituting Eq. (41) into Eq. (37), the gain function may
be rewritten as

8(@)=(q’-Q-Q)urB7 + 2r(QQTBT] +2qtr (Q BT] (43)

Introducing the quantities
o=ir8= Ea,- W,V (44)
L r
S=B+BT=Y, a, (W VT +V W) (45)
1=
Z= Yo (W,xP) (46)

1=}
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leads to the bilinear form
g(4g)=47Kg 47

where the 4 x 4 matrix K is given by
S~0l | Z
= |emmmeecedecaaa (48)

Equation (46) may be written alternatively as
Z =8-B r (49)

The problem of determining the optimal attitude has been
reduced to finding the quaternion that maximizes the bilinear
form of Eq. (47). The constraint of Eq. (40) can be taken into
account by the method of Lagrange multipliers.” A new gain
function g’ (4) is defined as

g (@) =¢TKGg—=NGT§ (50)

which is maximized without constraint. A is then chosen to
satisfy the constraint. It may be verified by straightforward
differentiation that g’ (§) attains a stationary value provided

KG=\d (51

Thus, ¢, must be an cigenvector of K. Equation (51) is
independent of the normalization of ¢ and. therefore. Eq. (40)
does not determine A. However, A must be an eigenvaijue of X
and for each eigenvector of X

8(q) =qTKG=rgTg=) (52)

Thus, g(q) wiil be maximized if g, is chosen to be the
eigenvector of K belonging to the largest eigenvaiue of X.
More concisely,

KGope = MmaxGome (53)

which is the desired resuit.

Coastruction of the Optimai Quaternion
Equation (53) can be rearranged to read. for any eigen-
value A,

Y={(A+0)/-S]-'2Z (54)
Amo+Z- ¥ (59)

where Y is the Gibbs vector defined as
Y=Q/q=Xtan(/2) (56)

In terms of the Gibbs vector,

. 1 Y
"’1714-:1'11{ | } 57

When A is equal 10 A,,,, Y and ¢ are representations of the
optimal attitude soiution. Inserting Eq. (54) into Eq. (5%5)
leads to an equation for the eigenvalues

)

A e
=o+2 (X+a)1_sz (58)

Equation (58) is equivalent to the characteristic equation
for the eigenvaliues of K, the expiicit solution of which it is
desired to avoid. However, it should be noted that

I & - .
maI-EEa:'W:-Aomy:'J (59

1=
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which is very close to unity. Substituting

Aroas = / (60)

into Eq. (54) leads to an expression for the attitude which is
accurate to second order in the measurement errors, provided
that the matrix

[((Apax +9Y]—S]

is not singuiar. However, the Gibbs vector becomes infinite
when the angle of rotation (in radians unless otherwise
specified) is x. Hence, from Eq. (54) the above matrix must be
singuiar there, and the approximation of Eq. (60) is not useful
when the angie of rotation is close to x. The remainder of this
subsection is devoted to developing more accurate methods
which avoid the problems posed by this singularity.

The first step is to derive an expression that permits the
computation of §,, without the intermediary of the Gibbs
vector.

It shouid be noted that an eigenvalue ¢ of any square matrix
S satisfies the characteristic equation

detiS—-¢/1 =0 (61)
which for a 3 x 3 matrix takes the form
—§I 42082 ~xt+0=0 (62)
with
A=det S (63)

o= /2trS x=tr(adj S)

where tr, adj, and det note the trace, adjoint matrix, and
determinant, respectively. By the Cayley-Hamiiton theorem, ¢
S satisfies this same equation in the sense that

Sim2085% S+ A (64)

Equation (64) may be used to express any meromorphic
function of S as a quadratic in S, in particular,

[{w+a)/=S) /=y~ (al+BS+S5?) (65)
where
amwl—gl+x fmw—g ym(w+a)a—A (66)
Letting w assume the vaiue A\, leads to
Yoo = X/ (67
where
X=(al+85+5)2 (68)

1t follows then from Eqs. (57) and (67) that

j ! X 69
Gou = ZTERTT ()

in which the Gibbs vector no ionger appears.
Equation (65) appiied to Eq. (58) leads to a convenient
expression for the characteristic equation, namely,

A= (a+D)AN? =cA+ (ab+co-d) =0 70y
where
a=gé—x bmat+27Z
cmA+2Z7SZ d=2Z75?Z n
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Because A,_,, is known to be very close to unity, the
Newton-Raphson method® applied to Eq. (70) with unity as a
starting vaiue aliows A,,, (0 be computed to arbitrarily high
accuracy. For sensor accuracies better than ] arc-min (1 deg),
the accuracy of a 64-bit word is exhausted with only one
iteration (two iterations) of the Newton-Raphson method.
The computational advantage of this approach as compared
to that required for the complete solution of the eigenvalue
problem is evident, especially when one considers that the
same quantities which figure in Egs. (71) must also be
calcuiated for the construction of the quaternion.

For the case where there are only two observations, A,
has a simple, exact ciosed-form expression

Amax =Vai +2a,a,c08(0, ~8,) +ai (72)
where

COS(8y, —0y) =(V,-V,) (W,-W,) + 1V, x P, |W, x W,|
(73)

Equation (69) can still lead to an indeterminant result if
both ¥ and X vanish simuitaneously. It is clear from Eq. (67)
that v vanishes if and only if the angle of rotation is =. In fact,
v is the determinant of the matrix whose inverse is given by
Eq. (65). Unfortunately, even if X does not vanish along with
v, Eq. (69) will not be accurate when the angie of rotation is
close to = because of large cancellations which occur. This
problem can be eliminated completely by empioying the
method of sequentiai rotations discussed below.

It is noted without proof that a rotation through an angle
greater than x/2 can be expressed as a rotation through =
about one of the coordinate axes followed by a rotation about
a new axis through an angle less than r/2. An initial rotation
through = about one of the coordinate axes is equivaient to
changing the signs of two components of each of the reference
vectors. The quaternion g= (p,,p,.p,.p.) T of the optimal
rotation transforming the new reference vectors V/, i=1,....n
into the observation vectors W, i= {,....n as calculated from
Eq. (69) is related very simply to the desired optimai
quaternion. The resuits for the three possible cases are

1) Initial rotation through x about the x axis:

Vim(Vy =V, -V,) G= (P =Py.P2 ~P)) T (14)

2) Initial rotation through = about the y axis:

i’,"'(-r" v, _P‘.z) ‘i'(Peru-ph—Pz)r (7%

L L) 14
3) Initial rotation through x about the z axis:

Vim(=V, ~V,.V,)

yr T

G=(=P0P1Pe ~Py) T (76)

Clearly, that initial rotation (inciuding no initial rotation)
will yield the most accurate estimate of §,, for which |yl
achieves the largest value. In any practical application,
however, iyl can be allowed to become quite smail before the
method of sequential rotations need be invoked.

Approximations Nesr Nuil Attitude

When the attitude matrix is known to be very close to the
identity matrix (null attitude) or, equivalently, when the angle
of rotation is known to be small, simpie approximations may
be obtained. In that case, Z will be a small quantity of the
order of the angle of rotation and to this same order ¥, may
be replaced by V, in computing other expressions.

Thus, if § is a quantity of the order of the error of ob-
servation or the angle or rotation, whichever is larger, then

Z=0(6) o=[+0(8%)

Ama = +0(5%) S=S,+0(5) ™
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where

Sp=2) a, P, VT (78)

=]

With these approximations Eq. (54) becomes

Y=[2I-5,]) -'Z+0(8%) )]
Likewise, near nuil attitude, Egs. (67) and (68) simplify to
]
2 2
Y= Tep—ay {kgl+S3)Z+0(5%) (80)

where

xp mtr(adj S,) A, =detS, 8D

When there are only two observations, Eq. (80) reduces to
Y=i{a, W, xV, +a, W, x V,
+a,( (bW, ~aW,)-(V,x V)]V,
+a,((aW, ~bW,)- (7, x V) ]17,} +0(8%)  (82)
with g and b given by

a=ml/\V, xV,I2 b=(V, V) /1P, xV,12  (83)

Equations (79-83) may be of practical use when the
spacecraft has a high pointing accuracy requirement in an
inertial reference coordinate system. in that case, the vectors
V,, i=],...,n and the matrix S, need be computed oniy once
and the connection between the observations and the Gibbs
vector is immediate.

Similarly, these small-angile aigorithms may be used as
optimal correctors in conjunction with a fast nonoptimal
algorithm that provides a good initial estimate. However, in
general, these hybrid algorithms will be computationaily less
economical than the more direct caicuiation of the optimai
attitude.

The QUEST Covariance Matrix

The covariance matrix for the quaternion is defined as
follows: Let 6§ be the quaternion of the small rotation that
takes the true quaternion into the optimal quaternion
calcujated according to the procedures described earlier in this
section. In terms of quaternion composition

For historical reasons, a sequence of quaternions is written in

opposite order to the same sequence of rotation matrices. 4G is
assumed to be unbiased, i.c.,

w{Gh-{1}

where the brackets denote the expectation vajue. Note that
Eq. (85) can hold for the scalar component of i only to order
(16Q1?). The 3 x 3 quaternion covariance matrix is defined
as

Pog=(506Q7) (86)

This is related to the covariance matrix of the Cartesian error
angles of Sec. II by

PQQ = VaPy (87
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which follows directly from
5Q=(66,,00,,60,)7/2 (88)

where &69,, 53,, and 50, are the angles characterizing the in-
finitesimal rotation of Sec. II. The error vectors for the
observation and reference unit vectors are taken to have
axially symmetric distributions as in Sec. II.

Because the definition of the quaternion covariance matrix
is independent of g, it may be taken to be the identity
quaternion. Thus, it is sufficient to compute the quaternion
covariance matrix under the special assumption that the true
reference and observation vectors are identical.

fpi‘fri

It follows then that with very high confidence 84 is the
quaternion of a smail rotation and the results of the previous
subsection can be used to obtain an expression for 4. Thus,
from Eq. (79) to within very smail quantities, we have

(i=1],...,n) 89)

5Q=M-15Z (90)
where
M=20-2Y, a,WWr o
1.}
8Z=Y a,(sW,xV,+ W, x5, (92)

=]

Equation (86) now becomes
PQQ=M"<6232">M" 93)

The evaiuation of the expectation value is straightforward and
leads to

(SZBZTy= Y ajoil - W, WT) (94)
1=/
with
ol =0, +0; (95
as before.

The a; could now be chosen to minimize, for example, the
trace of the covariance matrix. It is obvious from Eqgs. (91)
and (94) that the choice will, in general, depend on the con-
figuration of the observation vectors in a complicated
manner. A much simpler choice is to determine the weights a,

that minimize the original loss function of Eq. (34) when this
is evajuated at the true attitude. This ieads to

a; =0y /0f (96)
and the constant o, is determined from Eq. (35). Hence,

(0d) ! = 1] (o]~ (97

=]

Combining the above equations leads finally to

1 =~
Pmazafﬂ [l~ Ea, W, W,"] (98)

iw}

A unique soiution for the optimal quaternion will exist
provided that the inverse of Pgo, the information matrix.

2
P06’=4EI-—-2(1-W,W,’) (99)

is nonsingular.
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For the special case where there are only two observation
vectors, Eq. (98) may be simplified to

Pog=Yilobd+ \W, x W,| =3[ (a3 —al )W WT

+(°f“’f«)W:M+"f«(WﬂW:)(WJM*'W:M)]&)
(100)

Equation (98), just as Eq. (26), gives the covariance matrix
in the body system. More conventionaily, one defines the
quaternion covariance as a 4 X 4 matrix given by

P =(8444T) aon
where Ag is given by
Gop ™Grrae + A4 (102)

The inertially referenced quaternion covariance matrix 2,
can then be shown 10 be given by

and the matrix [g] is

94 -q3 q9; q,

q9s 94 -q; 4
(4= (104)

-q; q, 94 qds
-9, -9 =q; 4.

The singular nature of P,, is manifest.

The covariance matrix 1n the Euler angies may be obtained
easily using Eqgs. (80) and (33). It may be pointed out here aiso
that Egs. (103) and (104) are independent of the actual
algorithm used to compute the quaternion.

IV. A Comparison of the TRIAD
and QUEST Algorithms
There is a simple connection between the TRIAD and
QUEST aigorithms. Examine the ioss function of Eq. (34) for
the special case where there are only two observation vectors

L(AY=ia, |W,=AV, 12+ %0, IW,=AV,12  (108)

It will now be proved that the orthogonai matrix that
minimizes L (A4) passes in the limit ¢,/a, -0 into the TRIAD
attitude matrix.

It may be noted first that as a,/a, becomes increasingly
smalier, the constraint

A Vv )= W ) (106)
is enforced with increasingly greater severity. Therefore, it is
sufficient to show that the attitude matrix that minimizes the
loss function of Eq. (105) subject to the constraint of Eq.
(106) is the TRIAD attitude matrix.

In terms of the TRIAD vectors of Sec. II, the constraint
becomes
AF, =5, (107
and the constrained loss function takes the form
L(A)=ha, | (W, -W,=V, - V,)5,

— W, x W15, + IV, x V,1AF, 12 (108)

J. GUIDANCE AND CONTROL

Because A is orthogonai. AF; can have no component aiong
§,. Therefore, the choice

A"J "‘J (109)

minimizes the loss function subject to the constraint. Because
A must also be unimodular, it follows that

Afy=Ss, (110)

Hence, A is the TRIAD artitude matrix. This completes the
proof.

Because the QUEST attitude matrix for the special case
where there are only two observations passes into the TRIAD
attitude matrix as a,/a, —0 or, equivalently, as g,/0, =, it
follows that the respective covariance matrices must become
equal in the same limit. Noting Eq. (87) and comparing Eq.
(100) with Eq. (26) leads to

PTYAD = PQUEST 4 AP (an
where
APo, = Yi (03 — 08, )5p5T (112)

which is manifestly positive semidefinite and gives the ad-
ditionai covariance of the TRIAD aigorithm over and above
that of the QUEST aigorithm. Two speciai cases of interest
are noted in the following paragraphs.

For o, =0,, the quantity ¢ —o?, is equal to o7,. In this
case the variance of the TRIAD solution along the axis s, is
twice that of the QUEST solution. Thus, the QUEST
algorithm is to be preferred in this situation if attitude ac-
curacy about that axis is critical.

On the other hand for o, » 0,

0 —0i, mo4/03 (113)

which tends to zero as g,/0, —a, as required by the previous
discussion. In this case, there is littie advantage to using the
QUEST algorithm over the TRIAD algorithm where there are
only two observations. As a practical example. imagine the
combination of a precision sun sensor with an accuracy of 10
arc-sec coupled with an Earth sensor with an accuracy of 20
arc-min. For this sensor combination the accuracies of the
TRIAD and QUEST solutions about the s, axis will differ
only by 0.0003 arc-sec, which may be safely neglected.

The extra covariance term given by Eq. (112) has a very
simple interpretation. It can be shown that

AP =(Q(T=Q)Q7(T-Q)) (114)

where Q(T—Q) are the vector components of the quaternion
connecting the TRIAD and QUEST solutions.

V. Conciusions

Two aigorithms, TRIAD and QUEST, have been presented
which determine three-axis attitude from vector observations
with both high computational efficiency and high numericai
accuracy. The two aigorithms do not require the costiy
evaluation of trigonometric functions nor are they very costly
of computer core. Thus, they are ideally suited to attitude
groud support software systems when the attitude must be
computed very frequently and also to onboard attitude
determination systems, shouid these be required to determine
single-frame (i.c., nonsequential) attitude estimates. Simpie
but realistic analytical expressions have been presented for the
covariance matrices associated with these two algorithms.
These will be useful both for large-volume ground processing
of data and for mission planning. The importance of com-
puting covariance matrices in the spacecraft body coordinate
system has been demonstrated.
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For moderate-accuracy missions, the increased accuracy of
the QUEST algorithm. compared to that of the TRIAD
algorithm, is generaily not sufficient to offset the additional
computational burden imposed, which is approximately twice
as much for QUEST as for TRIAD (in terms of the number of
FORTRAN statements). For high-accuracy missions, the
opposite is usually the case and the QUEST algorithm is the
algorithm of choice. When more than three observations must
be employed in a single frame, the QUEST algorithm becomes
computationally more efficient as weil. A possibie drawback
is the method of sequential rotations, which potentially could
increase the number of computations by a factor of 4.
However, these extra computations will need to be im-
piemented only over a smail segment of each orbit, and for a
high-accuracy mission such as Magsat, it has been estimated$
that they need not be implemented at all. In the ground
support software for the Magsat spacecraft, which was
launched on Oct. 30, 1979, the QUEST algorithm has shown
itself to be highly efficient and reliabie.
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