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Abstract

Fast accurate algorithms are presented for comput-
iog an optimal attitude which minimizes & quadratic loss
function. These algorithms computs an optimal rotation
which carries a set of reference vectors into & set of
corresponding observatioa vectors. Simplifications of
these algorithms are obtained for the case of small ro-
tation angies. Applications to the Magsat mission are
discussed.

I. Introduction

Spacecraft typically carry & sufficient number of
sensors that the attitude is overdetermined. This per-
mits a more accurate determination of spacecraft atti-
tude than could be obtained with a smaller number of
sensors. A method must be devised, however, for com-
bining these sensor messurements to abtain the best
possible determination of the spacecraft attitude.

We presgent here a {ast method for constructing the
optimal estimate of spacecraft attitude given n refer-
ence unit vectors, n observation ugit vectors, aand &
quadratic loss function in these vectors. This method
Is based on an algorithm of P. Daveapon.l which deter-
mines an optimal estimate of the rotation which carries
2 set of reference unit vectors into a set of cbservation
unit vectors.

In the application of this algorithm to spacecraft atti-

tude dcurg:tu:.lon. the cbservation unit vectors**

1s ++ss Wy are the directions of the Earth, the Sun,
a star, or some other object, {a the body=-{ixed coordi~
nate system of the spacecra(t. The reforence unit vec-
tors, Vi, ..., Vg, are the directions of these same
objects in some reference coordinate system (often a
spacecraft-ceatered inertial coordinate system).

° ldexily, the observation vectors may be obtained by
applyiag a rotation to the reference vectors. The rota-
tion matrix which accompilishes this Ls the attitude
matrix of the spacecraft in the refcrence coordinate
system. In practice, this attitude matrix cannot be con-
structed unambiguously {rom the reference and observa-
tioa vectors due to errors in the measurement of the
latter.

It {s poasible, however, to determinc unambiguously
the rotation which minimizes a quadratic loss function.
The loss function stucied hore is

n
z(n)-%; 3, IW - th|2 (1)
. -1 .

where the &; , {=1, ..., n, are & sct of (positive)
weights. Usually, the reference unit vectors are better
known than the observation unit vectors. I[n this case,
the & are laversely proportional to the mean square
angular errors of observation.

If ap exact simultaneous rotation of the reference unit
vectors into the observation unit vectors is possible,
4R) can be made to vanish. la this case, the rotation
matrix (the attitude) is determined exacuy. Generaily,
this ia not the case and iR) {s always larger than some
minimum positive value. The rotation R, which
minimizes the loss function of Equation (1) is the optimal
eatimate of the rotation which carries the set of refer-
ence vectors into the set of obgervation vectors,

The optimization procedure sketched above is not
universally applicable to attitude determination since it
{s assumed that the sensor measurements can be reisted
to the direction of some object. For the majority of a-
titude sensors (star sensors, two-axis Sun sensors,
vector magnetometers, and horizon scanners), this is
{ndeed the case. Gyros are an cxample of a sensor for
which the methods presgeated here are not appiicable.

The problem of finding the optimal rotation which
minimizes the loss function above has been studied by
Davenport.l who showed that the quaternion represent-
ing this optimal rotation (the optimal quaternion) was the
eigenvector belonging to the largest eigeavalue of a
4 x 4 matrix. Davenport's algorithm has been examined
by Ke:n.z who anaiyzed its use in software for the High
Energy Astronomy Observatory-1 (HEAO-1) mission.

In the implementation of Davenport's q-algorithm in
the HEAO-1 mission software, the eigenvalue probiem
was solved using general methods for determining the
eigenvalues and eigenvectors of 2 square matrix of ar-
bitrary rank. This makes the algorithm both rather
slow and costly of computer corc storage. It is thus
unsuitable for processing on an on-board computer or
when the algorithm must be executed with high fre-
quency. This was not a consideration in the HEAO-1

fWork supported by the Magsat Project Office, Goddard Space Flight Center, National Aeronautics and Space

Administration, under Coatract No. NAS 5-24300.
*Member AIAA.
#*Unit vectors will always bc denoted by a caret.



attitude ground support software becauae the algorithm
was Iinvoked only infrequently. It is, however, a con-
sideration for Magsat where the attitude must be com-~
puted every quarter second.

We develop here a more direct method for determin-
ing the optimal quaternion which exploits the special
properties of the 4 x 4 matrix. A study3 of this method
for the scasor coanfiguration of the Magsat mission
showed it to be capable of yielding very accurate re-
sults with relatively little computatioa. This method,
therefore, is very fast.

In this paper, we first derive Davenport's q-
algorithm, (i.e., we obtain the eigenvalue equation for
the quaternion representation of the optimal rowtion).
We then develop a fast method for constructing the
exact soluticn to this eigenvalue equation. A number
of approximations are presented both for the general
case and when the attitude matrix is close to the iden~
tity matrix (nuil attitude). The accuracy of these al-
gorithms Is discussed for the sensor configuration of
the Magsat mission.

II, Davennort's g~Algorithm*

Let le ¥2, .ooo Wp bea Setof n observation
ugnit vectors and 2v eoes V bea setof o re-
ference unit vecton. Let a,, az. «sey 8n bea set of
o (positive) weights. For any rotation matrix R, the
loss LR) is defined as

15: & o2

The rotation matrix ¢ Wwhich minimizes this loss
function is said to be the optimal rotation (in a least
squares sense) which carries the vectors V;, 1 =

1, ..., n, into the vectors W[, i=1], ..., n.

Since the loss function may be scaled without affect-
ing the determination of the optimal rotation, it is pos-
sible Lo set

]
)D 2 =1 : 2
=1
Thea
4R)=1-gR) - 3
with
o "N A
gR=> 2 W -RV )
=1

*Thoe derivation here follows closely that of Reference 2.

Interpreting each v »1=1, ,..,n,asa3 x1
matrix, Equation (4) may be rewritten as

n
AT ~
g(R) -Z a W RV (4a)
=1

WF denotes the transpose of \?" . 4Ry will be a min-
imum if and only if the gain function, g(R) , is 2 max-
imum. Henceforth, all attention will be directed
toward {inding no pt which maximizes g(R) .

Interpreting the individual terms of Equation (4a) as
I x 1 matrices, it follows that

n AT
CIEED Y 3 r:—[wl R V'J
=1 .

= Tr(R B]
where

B-Zac\ (6)

i=}

as can be verified by explicitly evaluating both cxpres-
sions. The resuit has been used that the trace of a
product of matrices is unchanged by a cyclic permuta-
tion of the order of the matrices a.ppunng in the pro-
duct.

The maximization of g(R) is complicated by the fact
that the ninc elements of R are subject to six non-
llnear constraints. It is, therefore, more convenient
to reexpress the gain function in terms of the quater-
nion.

The quaternion q representing a rotation ls given

by
"Q' K sin (8/2)
= } = ™

lq cos (#/2)

where X is the axis of rotation and 8 is the angle of
rotation about x It should be noted that

"T =19 *qz-x (8)

The rotation matrix R is related to the quaternion §

by

R@ = (@ -Q- H1+23Q" -2q3 (9



where [ Is the identity matrix and §' is the skew-
symmotric matrix given by

o - q
3=fq ©° R (10)
'Qz Ql °

The gain function may now be written

£@ = g(RA@)

T

“@ -3 P TreT +27r(T BT) ()

- 2qTr[§BT]

It is coavenient to de_f_lne scalar, matrix, and vector
qQuantities 0, S, and Z according to

”~ ~
o-‘rrB-Z a W -V 12)
i=1
T & AT AT
S=B+B = a[w V,+VW] (13)
-ll | S [
-— L "~ v
Z=) 3 W ¥ (14)
=1

In terms of these quantities

M =0q -T-§+3°53+293-Z  9)

To obtain Equation (15), we have used the various invar-
iance properties of the trace operation and the identities

Q- ; i %

(10a)

(Tl‘x'v')‘ -§ (Uk U, vy

where ¢ijx is the Levi-Clvita symbdl which is defined
{o be totally antisymmetric with €123 =1.

Equation (15) may be written equivalently as

- e® =3 K (16)
. where
S-o0l : Z
o o

The problem of obtaining the optimal cstimate of the
rotation has been reduced to finding the quaternion
dopt Which maximizes the bilinear form of Equa-
tion (16) subject to the constraint of Equation (8).

is then obtatned by substituting qgp; in Equa-
tion (9).

The constraint of Equation (8) may be taken into ac-

count by the method of Lagrange multipliers.5 A new
gain function g'(q) |a defined as
. T =T_
e®M=q KF-AT' § (18)

which is maximized without coastraint. A is then
chosen to satisfy the constraint. It may be verified by
straighforward differentiation that g'(§) attains a sta-
tionary value provided

K§=Ag (19)

Thus, Qun¢ Must be an eigenvector of K. Equa-
tloa (19) Ys independent of the normalization of q .
Hence, Equation (8) dues not determine A , although.
clearly, A must be one of the four vigenvalues of K.
However, for each of the four eigenvectors of K

g@ =T KI=AG q-A (20)

Thus, g(§) will be maximized If q,,, is chosen to be
the eigenvector belonging to the largest eigeavalue of
K . Therefore, we writc

an)t ® '\nn.x qopt en

‘This is Davenport's resuit.
A unique solution to Equation (21) will be possible as
long as there exist two independent observations. This

may be expressed algebraically by the condition that the
vector

~ A~
Zl a2 W xW,
gt

not vanish. The larger the magnitude of this vector,
the greater will be the accuracy with which the attitude
is determined.

111, _Construction of the Optimal Quaternlon
Nature of the Solutions
We now develop 2 method for constructing the op~
timal quaternion, whence, by Equation (9), the optimal
rotation. Equation (19) may be rewritten
(S-onQ+Zq=AQ (22)
Z:-Q+0q=2q (23)

which may be rearranged to read

T=la+at-s'7 (24)



As0+Z°Y (25)
where. ¥ ls the Gibbs vector, defined as
¥ ~Q/q ~ X tan (6/2) (26)

Agein, X is the axis of rotation and 8 s thc aagie of
rotation about X . In terms of the Gibbs vector,

1 {?
q.
/1 . l?lz 1

When )\ is equal to ax ¢ Y and { are represen-
tations of the optimal rotation. Once Amax is known,
dopt iS immediately determined by Equations (24) and
(27). An implicit equation may be obtained for Amax
by substituting Equation (24) iato Equation (25) to yicld

- 2n

T 1 -
A-ofz (A+a)l-sz (28)

Equation (28) is equivalent to the characteristic
equation for the four eigenvaius of K , the explicit
solution of which we wish to avoid. IHowever, combin-
ing Equations (1), (3), (20), and (21), we obtain

1 o o2
A ™! --2-;.:1 AL A (29)
It follows immediately that Amax IS unity if an exact
rotation of the reference vectors into the observation
vectors is possible. It {s to be expected that Amax will
deviate from unity by 2n amount on the order of half the
mean square angular accuracy of the seansors.

Thus, the deviation of Ampgy from unity will be
very small. For seasor accuracies oa the order of
1 degree (~. 017 rad) Apg, Wwill differ from unity by
an amount on the order of 3 x 10~ (~(.0172) . From
Equation (24) we note that if the matrix

((xwwu-s]

1s nonsingular, then Y may be expanded In a Taylor
series in (Amax - 1) . Therefore, substituting

Amax ~] (30)

in Equation (24) yields Y to this same accuracy, which
corresponds to 2 computational error of 1 arc-minute
(~3 x10~%.rad) . For Magsat, where sensor accura-
cies are better than 20 arc-scconds, the anticipated
computational error using Equations (24) and (30) is

. 002 arc-seconds.

The premise that the matrix

[(xww)t -8)

18 nonsingular does not hold when the angle of rotation
is ¥ .* In that casc, the Gibbs voctor is infinite and,
therefore, the matrix must be singular. Equation (30)
is not a uscful approximation in this case.

The difficuitics encountered when the angle of rota-
tion is close o 7 may be reduced in two ways. In the
first, the Gibbs vector is eliminated 2s an intermediate
variable and a more accurate expression is obtained for

. This reduces the bad cases to a sufficiently
small interval that they may be ignored. The second
method eliminates the possibility of 2 rotation through
7 by expressing the rotation as a sequence of two rota-
tions. Both of these methods, which inay be used con~
jointly, will be devcloped in the subsections which fol-
low.

More Accurate Expressions

We present here a method whereby the optimal qua~
ternion can be constructed without first compuing the
Gibbs vector. This mcthod relles on the Cayley-
Hamilton Theorcem,5 which states that a squarc matrix
satisfies its own characteristic cquation. The material
in this section rclics on a useful represcntation of the
matrix

(w + ot - 517}
for arbitrary w , which is due to Markley.7

We begin by noting that an eigenvalue £ of any ma-
trix S satisfies the characteristic cquation e

det |S - £1{ =0 (31)

For a 3 x 3 matrix, this equation takes the form

-534.20(2-({4»5:0 (32)
with
c-%‘l‘rs (33a)
K = Tr (adj S) (33b)
{(33c)

AmdetS
Tr, adj , and det denote the trace, adjoint matrix,

and determinant, respectively. By the Cayley-Hamilton
theorem, S satisfica this same equation so that

S3 = 2032 - KS+ Al (34)
In general, any analytic or rational matrix function

of 8 may bo expanded, at lesst formally, as

-

‘ k

(8 = b 1 f b S (35)
=]

*When no units of angular measure are given these are radlans. ' —



By repeated appllication of Equation (34), this samo
series can always be reduced to a quadratic in S. In
particular, it must be poasible to write

K

(w+ant-sI =y a1+ Bs+s]) \  (36)

@, 8, and ¥ may be obtained by multiplying both
members of this equatioa by

{(w+al-5]

and noting that 1, S, and S° are linearly independent.
The resuit is

a-wz-oz¢t 37
B=w-0 (38)
7-(w+o)(wz-az+lt)-A (39)

Letting w take on the value Apmax and substitutiog
Equation (36) into Equation (24) leads to

Y=X~ (40)
where
T (@l+8S +SHZ (41)

is the unnormalized optimal axis of rotation. [t follows-
from Equation (40) that

X

y (43)

i et
2. Ii'lz

Slace Ifl and ¥ can never be inflaite, Equa-

tion (42) avolds the difflculties associated with the di-
vergence of the Glbbe vector as the angle of rotstion
tends toward 7 . From Equation (40), we see that ¥
must vanish when the angie of rotation is 7 . However,
it is possible in some instances that ¥+ Iflz van-
ishes making Equation (42) indetcrminant. We now de-
termine the condition for the vanishing of ¥2 + | X|2 .

We note first that

yedotjd  +o)1-8| (43)

which may be verified by direct computation. There-
fore, y vaaishes if and only L[ the angle of rotation Is
7 . From Equations (36) and (43), it follows that
det m"“'.’.‘ +o)l-5|

QA +n1l-§

al+p8+S = (44)

whence

det [al + S+ §°] =72 (45)

Hence, the matrix al + S + s2 18 singular if and only
if the angle of rotation is # . [owever, unless this__
matrix vanishes (dentically, which is oot possible, Z
cannot be an eigenvector of this matrix with vanishing
eigenvaiue. Otherwise, l?'l would not Si’lverge as the

~ angle of rotation approached # . Thus, X vanishes if

and only If Z vanishes and, therefore, 2 + | X} 2
vanishes if and only if the angie of rotation is # and
Z vanishes.

It is now necessary ta determine the conditions under
which 7 vanishes when the angle of rotatlon is # . If
the errors of observation are negiccted, then .

z 'g ai (Ropt Vi) X Vi (46)

If & is the axis of rotation,* then Gi may be decom-
posed a3

O T T "
Y : (47
with
Vo =f (- GI) (482)
"'; a R x (R x Ci) (48b)
For a rotation through 7
G S'Vn - V| . . 49
opt | i i ' (49)
whence,
-— n - -~
z-zz:alv'i'xv; (50)
i=1
Z=2 t G- V)@x¥ 51
2 a@-vymxvy _ (’ )
or
Z=fx (som (52)
with
n .
A AT
s°-z a v, v, (53)

A ————————— —
*We do not write X as before to avold confusion with X which, when it vanishes, does not have a well-deflned

direction associatea with it.



Thus, 72 *"Sa 2 vanighes if ‘and’only'if the angie 'of ro=
tation is ¥ and the axis of rotation T ig ar eigenvec-
tor of S, . For‘a spacecrift with’three idéntiesi-
mutually perpéndicular sefisors; S;"will be equal-to
2/3) 1 agd -¥2°+ } X| 2" wilf vanisk whenever the angle
of rotation is 7 for any axis of rotatiun. Thus, there
is some smail advantage in not ‘making’ the sbnsors
mutually orthogonal when there are thres sensors of -
equal accuracy.
X - mrrae - L 2 - 2 R

It may be pointed out that while ¥ + {X]“ may not
vanish, there may gilii be large computational‘errors
from truncation errors in"the computation 8f 9 and
X . These occur oaly for angles of rotatioh near- -
and will be discussed in more dewl in Sscuon V.

Markley's fomula also’ lmds toa conwluent expres-
sion for the characteristic equation for A . Substitut-
ing Equation (36) with ‘w equal to A  into Equation (28)
and mulitiplying both members by y Ieads ﬁo7 .-

~a+pa’-a +~(ab_ Yoa- ii)_;_ o (54
o R )
“a -oz-lt (55)
b-oz+ZT'z‘ (56;1
csa +'z’7_§2 : (57
4TS T (58)

Since Amax 18 known to be very close to unity, the
Newton-Raphson method® applied to Equation (54) wita
upity as a starting value provides a very fast mesans of
computing Amax - For Magsat, where the sensor ac- .
curacies are better than 20 arc-seconds (~10-4 racn. )
the dmauou of Anax from unity is on the order ot '
10-8, After one application of the Nswton-Ruﬂlson '
method, Amey I8 obtained with an accuracy of 10-16,
This is comparable to the accuracy of a double=
precision word (64 blts) in IBM FORTRAN, namely,
10716.8, ror sensor accuracies on the order of 1 de-
gres, this same accuracy is obtained with only two
iterations. - - . .

The Method of Sequential Rotations

The accuracy of the computation of the oﬁtfmsl 'qqa-
ternion when the angle of rotation is close to ¥ may be
further improveqd as follows,

When the angle of rqtathn in greater than 1/2 the
rotation can be expressed as a rotation thtoqgh 7 about
one of the coordinate axes followed by a rotation about
some now axis through an angie loas than #/2 . An
initial rotation through 7 about one of the coordinate
axes is oquivalent to changing the signs of two of the
components of each reference vector. The quaternion
P =(pPy. P2, P3. p4)T of the optimal rotation trans-
forming the new rcf{erence vectors® V' to the

observation vectors \’\7, is related very simply to the

desirod optimal quaternion g = @y, 99 43 q4)T for
the total optimal rotation. The reaults arc as follows:

Rotation through 7 about the x~axis

o

o ~ ~ -A T .
V= (vu. Vi vlz) (59)
9 =P =P
1 B ©0)
q:! = p2 q4 = -p1 »
Rotationthrough 7 about the y-axis
~ ~ ~ »‘; T
ie ('vix' Vigs = iz) (61)
q, =p q, =P
1 3 2 4 ©2)

q3= ‘Pl q4 ="P2

Rotation through 7 about the z-axis

~ ~ ~ ~ T

A -V v
Yi ( Vixt “Viy* iz) (€3)
q, =-p q,=p

1 ) 27 P ©4)
9% Py Y= Py

Although y2+ lj may not be amall, the computa-

“t'ion of qo ¢ from Equation (42) will not be accurate if

ly] is very smali. For small angles of rotation, y is

" of the order of unity. When |y| is much less than
unny. one of the initial rotations given by Equations (59),
(61). or (63) will lead to a second rotation for which ¥y

".'_ - 'is sufficiently large to ensure high accuracy. The op-
. “%irnal quatarnion for the full rotation is cbuained by
. applying Equations (60), (62), or (64).

IV. Approximations Near Null Attitude

When the attitude matrix is known to be very close to
the identity matrix (nuil attitude) or, equivalently, when
the angle of rotation is known to be smalil, simpie ap-

' proximations may be obtained. In that case, Z will be

a small quantity of thé order of the angle of rotation and
S will differ from S, of Equation (G3) by terms of the
aame order. Thus, if & is a quantity of the order the
error of observation or the angle of rotation, whichever
is larger, then

Z=0®) (65)
s-s°+0(6) (66)
2
g=1+0 (" 67
)Y 21+0 (62) (68)
max

r



With these approximations Equation (24) becomes

T=la-s)'Z+0¢? (69)
In the spocial case that the spacccraft carriesithres
mutually orthogonal sensors of the same accuracy,
Equation (69) simplifies to
¥=@/4 Z+0 6% an
In the general case, near pull attitude
v 1 27= 2 . X
Vo [c1* s;]Z+0 6% e
o o
where
K =
o Tr (ady so) 72)
(73)

A =detS
[ [

Equation (71) follows directly from Equation (40).

When there arc only two observations, Equation (71)
reduces to

Talla @ xF +a. @ x9
2 M1 T TR XY,
+a [ W, bw G G ¢
1 @V -B W) ‘1"2’]1 .
+a [(‘ow -aw AR AR ")”r
2 [PV -a W) -z’];-z’ . F
2 o w
+0 (67) -
with a and b given by ‘ 3
ae 6 IA - \ r ;gs)d.l.-;
| lxvzl
(G’k - /v\('x)‘ - "-‘l'\ T:L
1° Y2
be (76)
a2
IGlxvzl

More accurate though aiso more cumbonomo ox-
pruaioxu3 can be obtained by setting

s-o1! 0
- - b +

-] ' -
i

and applying Rayleigh-Schroedinger perturbation theory.
Such expressions, however, have no computational
advantage over Equation (42) above.

K=

Equations (¢9) through (76) are useful when the
spacecraft has 2 high pointing accuracy requirement in
an inertial reference coordinate systom. In that case,
the vectors Visi=1, ..., n, and the matrix S,

A

~

l— L
L

need be dstermined only once and the connoction between
the observation vectotq. and the Gibbs, vegtor is simple.
ot
Similarly, thm sma)l ang;e n!ubruhms cquld.be;
used in conjunction with an, initial attitude estimate,ob=
tained from some fast nonoptimal algorithm, -to provide

P

"2n optimal a‘titude solution, since the difference between

the optimal asd nomoptuul.csumms of the azgtude is
usually small. e s

TSR MY

V. Appllcltions to Maea

Equations (42).and {54) have boen l.ested enens‘ve,ly
for the sensor configuration of the Magsat mission.
The Magsat spacecraft, scheduled for launch in
September 1979, will be placed in a Sun-synchronous
ordit. An on-board semi-autonomous control system
will keep the spacecrafs Earth-pointing.

FeT

-1

The Magsat spacecraft will measure lhe geomarmenc
field with an accuracy por componesnt of 7.gamma -
(=7x 10~% Gauss), This requires that the spacecraft
attitude be known to an accuracy of at least 20 tre-
seconds. To accomplish this;, Magaat will carry wo
fixed-head star trackers and a fine Sun sensor.

The angic between any two sensor axes lies between
GO degrees and 75 degreces. Thus, .the sensors provide
relatively independent information and aiso the matrix
So will be far from 2/ 1.

To test the algorithm, a set of three "exact” refer-
ence vectors \'i was constructed which corresponded
to the dircctions of the three Jsensor axes. A set of

. "noised" referencc vectors ”i was then constructed
which differed fromn the V by errors of about 15 arc-

seconds and chosen so Lh:u the optimal rotation carry-
ing the V{ into the Ui ‘'was the null rotation. - For
given angle nnd ms of rotation, the bhserv:mon vectors

{ wero conlnructed by rotating the’ U This com=~
pllcnu:d procedure was necessary so lhlt the angle of
rotation could be given an exact meaning, ‘even though
the' correspondence between the vi and the: \Vi was
not exact.

For many choices of the axis and angle or rouuon.
the input and output quaternions were compuled. The -
input (true) quaternion was constructed from ‘the knorwn
angle and axis of rotation according to Equation (7).
The output quaternion was computed using Equations (42)
and (54) with Ap,ge computed using one iteration of the
Newton-Raphson method. Computations were performed
using the IBM S/3G0-95 computer at NASA Goddard
Space rugm Center. o

It was found for all choices of the axis of rd\'atfon
that the computauonnl error was on the order of
10=15 radians ~2 x 10~10 arc-scconds) untii 6 ,
angle of rotation, bscame as large as 179.5 dogrees
(l* - 6]20.01) . 'Thercafter, for each decade decrease
in |¥ - 8| , the computational error of the solution in-
creased by one decade until |7 - 8| became smalier
than 10~15, ‘This is the expected behavior for a purely
truncational error. Thus, the error becomes greater
than 1 arc-sccond for |m - 6| <10-41."




To appreciate this magnitude, it should bo noted that
the circumference of the Magsat orbit is approximately
44,000 kilometers. Computational errors larger than
1 arc-second in the attitude estimation are restricted
to & segment of thia orbit no longer than 100 microns.

The Magsat spacecraft attitude will be computed
once every quarter second. At this rato, it {s antfci-
pated that attitude computation srrors will exceed
10™4 arc-seconds only ooee every 2 years and exceed
1 arc-second perhaps once in 20,000 years.. Indeter-
minancy in the attitude dus to the vanishing or near
vanishing of ¥2 + |X]|2 will occur perhaps once in
1040 yeara. Theas times are long compared to tho ex-
pected Magsat misston lifetime of {rom 4 to 8 months.
Far this reason, there is no plan to implement the
method of sequential rotations doveloped at the cnd of
Section IIT) in the Magsat mission software.

It should be noted that the computational error in
determining the optimal attitude is not the same as the
attitude determization accuracy. The computational
error is the dilf=rence between the computed optimal

attitude and the exact optimal attitude. Although the . .. -
computational error can be made arbitrgril)' small,. . ..
the difference of the optimal attitude.from the true atti- . :

tude will £iill be on the order.of the statistical sum of
the sensor errors. IERY:
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