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rives the equations that determine the stability of the
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INTRODUCTION

The Heat Capacity Mapping Mission (HCMM), scheduled for launch in the sec-
ond quarter of 1978, is the first of the Applications Explorer Missions (AEM).
The AEM, which use relatively small spacecraft, provide a means for perform-
ing various tasks that require low cost and quick reaction. To make a thermal
map of North America, the HCMM satellite will be placed into a circular, Sun-
synchronous orbit at a 600-kilometer altitude and a 98-degree inclination.* It
will be three-~axis stabilized, with the spacecraft's y- and z-axes along the neg-
ative orbit normal and nadir, respectively. The HCMM attitude control system
consists of an integrated infrared horizon sensor/momentum wheel assembly
or sca.mvhee1® (reg'istered trademark of ITHACO, Inc.), mounted along the
spacecraft's negative y-axis, and three-orthogonal fluxgate magnetometers and
electromagnetic torquing coils. Elegantly simple control laws, based on a pro-
posal by Seymor Kant, Peter Hui, and Joseph Lidston of Goddard Space Flight
Center and described in Reference 1, are used to despin the spacecraft after
separation (rate capture), to orient the scanwheel angular momentum vector to
within 10 degrees of orbit normal (attitude capture), to achieve Earth lock and
operational wheel speed (pitch capture and momentum control), and to maintain

pitch and roll within 1 degree of zero.l

The performance of these control laws has been the subject of several investi-
gations (References 1 and 2). However, the equations that describe the attitude
dynamics are intractable and, consequently, the eariier work relies heavily

on numerical simulations and obtains largely phenomenological results. This
paper presents a simple analytic model for the attitude motion of the HCMM
satellite whose solutions retain all the features of the complete simulated dy-~
namics. Within such a model, it is possible to study in a fundamental way the

*The ascending node will occur at 2 p. m. local time.

TYa.w is maintained within 2 degrees of zero by gyrocompassing.



performance of the HCMM acquisition- and mission-mode attitude control laws.
In particular, the stability conditions of the system in both modes assume rel-
atively simple analytic forms from which can be obtained insight into the de-
pendence of stability on the spacecraft and control law parameters. These
results are not easily obtained from numerical simulations. This semiquantita~
tive model does, in fact, suggest modifications to the mission-mode control

law which result in improved attitude control performance.
MAGNETIC FIELD MODEL

The spacecraft is assumed to be in a circular, polar orbit, and the Earth’'s
magnetic field is taken to be a pure magnetic dipole with the magnetic South Pole
coinciding with the geographic North Pole.* The magnetic field at the spacecraft
in the orbital reference frame, denoted by the subscript O , (@x = velocity di-

rection; ’e‘y = negative orbit normal; @z = nadir direction) is then
- A . A
foa) =B (cos wot ex + 2 sin wot ez) (1)

where wo =.(;. 00108 2mclxans per second is the orbital angular velocity and
B=2.3X10 " Wb/m"~ at a 600-kilometer altitude. The spacecraft is assumed
to be traveling northward at the equator at t =0 . The magnetic field may be
written in the inertial reference frame, denoted by the subscript I, (Z = Earth's
spin axis; X= descending node; ? = orbit normal) by substituting .

N
e =coswtzZ+sinwtd
x ) )

(2)
. ~
e =-smwtz+coswt§
z o 0

*The south end of the dipole is actually located at 78. 6° N latitude. The error
in the field magnitude for HCMM, as derived from the dipoie model, is about
4 percent at the equator.



into Equation (1) to obtain

fl(t)=%B gsm2w°t§+(cos2wot-§l—)?g (3)

ACQUISITION-MODE CONTROL LAW

The rate and attitude capture control law drives the three electromagnets in
response to the rate of change of the magnetic field as measured by the mag-
netometers in the spacecraft reference frame, denoted by the subscript B or
body coordinates. The actual control law has the form* .

= k! :
D k sgn(BB)‘

B (42)

where D_ is the commanded magnetic dif:ole moment and B., is the magnetic

B 2B

field, both measured in body coordinates, and k' =10 A-m (10,000 pole-cm).

The control law in the model presented here is taken as

EB = -lc T§'B (4b)

where the discrete sgn function has been replaced by a continuous function and -

k is chosen so that '53 assumes similar values in Equations (4a) and (4b). The
advantage of this approximation is that it allows an analytic solution of the equa~-
tions of motion. Numerical simulations with the '"bang-bang'' control law of
Equation (4a) give results which are similar to those with the proportional con-

trol law of Equation (4b).

* _|+1if x20
SeB (™= {1if x <o



In inertial coordinates, Equation (4b) may be rewritten as

- - = - - X
D=4 D= l-.(BB>I k(B -@xB (5)

where the orthogonal attitude (or direction cosine) matrix A transforms vec-
tors from inertial to body coordinates and @= (wx, u.;y, u.'z)T is the angular
velocity of the spacecraft relative to the inertial reference frame. The capture

control torque in inertial coordinates is

— — - — - 3 9
X° =-k[ ‘B . I‘w}

Ny =D X B By xBp-(w-B) B +B (6)
or explicitly
[ 1 2 1
-(—--coszwt) w -stwt(--coszwt)w
3 (o} X o \3 o V4
2
-C _ 9%B 1 S 1 :
NI, 2 2(1-3coszw°t) W, 2(9-3coszwot) wy (7
1 .2
-sinZwt(—-cos2wt)w -sin 2w tw
- o \3 Q X o] z d

Euler’s equation for an (assumed) spherically symmetric spacecraft takes the

form

Iw+H.I=NI+NI (8)

where

H =A" (0, ~h, 0)T (9



is the wheel angular momentum in inertial coordinates, I is the spacecraft's
moment of inertia, -ﬁf is the sum of the environmental disturbance torques,

and h is the magnitude of the wheel angular momentum.

The qualitative effect of the control law depends on the magnitude of the space~
craft's angular velocity, W, relative to the orbital angular velocity, w . The
two regions, |@}>> w and [&] = w , are denoted rate and attitude capture,

respectiveiy.

Let us first consider the situation at spacecraft separation where |w| >> “,
and thus fc—u-x fII >> [EE{ . Ignoring the environmental torques and the effect
of the wheel angular momentum for the moment, Equation (8) may be written
as

2 —

Iw+k(w B ~(w-B) BI] =0 (10)

el

Thus, the component of pry perpendicular to BI

proportional to lﬁ;[ 2 . The orbital motion ensures that @ cannot remain

decays with a time constant

parallel to -§I (there are no such torques), and so all components of w in
inertial coordinates decay until o = w, - The effect of the wheel angular

momentum is to superimpose oscillations at the nutation frequency, u.‘n>> wo ,

on the exponential decay of W .

After l?jl is reduced to approximately the orbital angular velocity, the change
in the magnetic field due to the orbital motion, FI , can no longer be neglected.
The approximate steady-state motion may be deduced by setting <1\7?> =0 in
Equation (7) to obtain a solution
<wSSSa<wSSamg
X z

(11)
y 5 o0



+

where the superscript denotes the approximate steady-state solution and the
brackets denote that the coefficients in Equation (7) have been orbit averaged.
Thus, the steady-state attitude rate is about the orbit normal at approximately
twice the orbital rate.

Now consider the steady-state attitude. Initially, the wheel angular momentum
vector, ﬁ} » may have any orientation relative to the orbit normal. The control
torque causes ITI.I to precess about the orbit normal to satisfy Equation (11).
This results, on the orbit average, in the continuous subtraction of angular
momentum from the inertial x- and z-axes and the addition of angular momentum
to the inertial y~-axis (orbit normal). Because !I-I.I] =h , by control of the
wheel speed, the steady-state artitude is with the wheel angular momentum along
the orbit normal. The antiparallel attitude (with the wheel a.x;gular momentum
along the negative orbit normal) is a saddle point or a position of unstable equi-
librium because any perturbation results in the addition to the system of angular
momentum about the orbit normal. Figure 1 provides a qualitative illustration .

of the effect of the control law.

To quantify these arguments,. we explicitly solve Euler's equations for small.
perturbations from the nominal attitude. The matrix that transforms vectors
from orbital to body coordinates is )

1 y -p
K= |-y 1 T (12)
p -r 1



'.‘Y (ORBIT NORMAL) ¢y (ORBIT NORMALI

A
Fa" (FINAL) T

o
H (INITIAL)

A
v/ >
aR DUE TO - -
BN\l
THE CONTROL LAW ;H, (FINAL)
"SR aniTiau

(A) (8)

Fig. 1 The orbital motion causes the wheel angular momentum vector
to precess in a cone about the orbit normal. The control law
adds angular momentum along the orbit normal and removes
angular momentum in the orbit plane. Regardless of the

initial orientation, ﬁ'l. migrates to the orbit normal.

where roll (r), pitch (p), a.nd yaw (y) denote small angles about the orbital

reference axes, @x ’ ’e‘y , and € . The control torque in body coordinates is
z

= d — —
Np=-k = [KBo(t)] X [KBo(t)]
| 2 - (13)
2wy + 4r sin” wgt-y sin Zwot
~ -k32 2w, +p (cosz Wet + 4sm2 Wot)
=2W,T + ¥ cos® Wot-r sin 2wt ]
Hence Euler's equation may be written in body coordinates as
15+ Tx Ay =Y (14)



where the environmental disturbance torques are assumed to be negligible during
attitude acquisition. Substituting Equation (13) into Equation (14) and using the
expressions for the angular velocity and body angular momentum, @ = (f - woy,

p- wo’ y+ wor)T and '}TB = (0, -h, O)T , we obtain the resuit

Ir+(h - Iwo) y+ hwor + sz (Zwoy +4r si.n2 wot - ¥y sin 2wot) =0 (15a)

2
9“23 (§ - % cos 2th) p+2kBw =0 (15b)

I + 3" 3

. 2, ., . 20 _
I¥-( Iwo) r+ hwoy + kB ( 2w T + ¥ cos wot r sin 2w°t) =0 (15¢)

where h> 0 if the final orientation of the wheel angular momentum is parallel
to the orbit normal and h <0 if it is antiparallel to the orbit normal.

The pitch equation is decoupled from roll and yaw, which are coupled through
the momentum wheel. The Fourier series solution for pitch rate is given in

the Appendix and may be averaged over the orbit to obtain

) “o = m+l m 2 (16)
<pss> =3~ P+SZ (=) 3 2Im(b)]

m=1 a“+m



where

b=— (17)

and Im are modified Bessel functions of the first kind (Reference 3). Note
that the steady-state mean pitch rate is neither «, which is the w , e
("'strong~-coupling’') limit and may be obtained by assuming that the spacecraft
tracks the magnetic field nor% w, which is the u.\l = 0 ("weak-coupling'') limit
and may be obtained directly from Equation (13b). Equation (16) is an infinite

series whose terms alternate in sign. For b> m>>1

exp(b)

I B~ F=== (1+0(m/b)) (18)

Thus, for large b convergence is very poor and the series in Equation (16)
must be summed with care. Figure 2 shows the steady-state mean pitch rate

as a function of w In Equation (16), twelve terms were required to obtain

1 L
0.1 percent accuracy for w, = 30¢¢.‘o . Note that <;':ss> satisfies the inequality

%“’o S <pgg™ < Wy (19)

For HCMM, w,  ~ 6w _; thus, <p_ >=0.9%6 w_.
o ss o-

1

10
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Fig. 2 Steady State Mean Pitch Rate

The roil and yaw equations may be written approximately in Laplace transform

notation as

) l
Isz+2kB"‘S+hw° :(h-IwO)S+2.kB2w° L(r) L(NEx)

= (20)
-(h-Iwo)S-Zszwo,'Isz+%szs+ha'o Ly [LOVEy)

where sin 2 w t, sm2 w t, and cos2 wot have been replaced with their orbit-

1
averagedvalues <sm2w t>=0, and < smzw t>=< cos w t>--2-.

11



The characteristic equation for the eigenvalues of the above matrix is

2
Pst B2 L1g3, [hz + (1wg)? + (k BZ)ZZISZ
(21)
+ [%k B2 hwy ~ 4k B2 Iwoz] S + h2 %2 + (2wok 32)2 =0

from which the stability conditions of the system may be determined. A neces-
sary condition for asymptotic stability is that all the coefficients in Equation (21)

are positive. Hence,

h> 1% lwg> 0 (22a)
k>0 (22b)

The requirement tk’zat h> 0 demonstrates that only the attitude with the wheel
angular momentum parallel to the orbit normal can be stable. Sufficient con-
ditions for stability are obtained by applying Routh's criteria (Reference 4) to
Equation (21). This leads to the inequality

2
% hd - % h2 Twg + %—g- hlwe)2 - 5—: (Iwg)3 > (k B%)~ (14 Iw, - 1?3- hy  (23)

2
Assuming a maximum dipole strength of 10 A - m~ (10, 000 pole cm), the con-

stants for HCMM are

3k BwozIOA . mz

0. 024 J .
Imoa‘ S (24)
h==3.2 J s

kB2z0.072 J-s

which can be seen to satisfy Equations (22) and (23).

12



A series of numerical simulations was run to investigate the validity of the
stability equations. The simulator, more fully described in Reference 5, uses
the actual 98-degree inclination orbit together with precise models of the Earth's
geomagnetic field, the horizon sensor, and the attitude control system. A var-
iable stepsize, Adams~Moulton predictor-corrector algorithm was used to in-
tegrate the equations of motion. It was found that asymptotic stability, i.e.,
‘convergence of the wheel axis to within 10 degrees of the orbit normal, required
that k>0 and h > 2Iw° > 0 in agreement with the predictions of the model.
Simulated results for the steady-state pitch rate were also in agreement with

the model results illustrated in Figure 2.
MISSION-MODE CONTROL LAW

After the angular momentum vector has moved to within 10 degrees of the orbit
normal and the pitch rate has reached the equilibrium value of approximately

w o .the mission-mode control laws are invoked. Pitch capture and subsequent _
control* are obtained by torquing the momentum wheel in response to an error

signal from the infrared horizon scanner (Reference 1).

Roll and yaw control is achieved by commanding the y-axis electromagnet based
on magnetometer and roll-angle data (References 1 and 2). The electromagnet
strength is commanded according to the control law

D =KNBy+K

. Bx r (25)

P

where B, 5" (Bx, By, Bz)T is the measured magnetic field in the body and KP

and K\: are the precession and nutation gain, respectivelyT Substitution of
4

*The control requirements are |p| <1deg and |p| <0.01 deg/s.

Tas for the acquisition=mode control, the hardware limitation
IDyl <10, 000 pole-cm is ignored.

13



Equations (1) and (12) into Equation (25) gives the mission-mode control torque

=T —» —»
NB—DXB

= {[kn [sin wot (21 + ywy) =cos wot (¥ = 2T wg)] + kp cos wot r]i (26)

X (2 sin wet, 0, =-cos wot)T

where the gains, magnetic field strength, and unit conversions have been ab-

sorbed into the constants kn and kp

Substituting Equation (26) into Equation (14) and taking the Laplace transform

leads to the coupled roll and yaw equations in matrix notations as*

r NEx
M(S =1L . a7
()Ly NE, . (27a)

where

tx S2 - 4ka S sin® A (B = (le ~ Ty + Iz) o + kn sin AT S

!
|
+H{duwp(ly = Iz) + bug ~ sin 2\ (2Kka wo * kp)] ! -2ka wo $i° A
ME= |- === c--msmoese o iAol (27b)
|
|

(dg+Ix=Iy)wo=h+kasin2A]§
*(y + 2ulq ke) coa? X

and A =wgyt is a2 measure of latitude. ** Although many approximations were

employed in obtaining Equation (27),. and simulations using detailed hardware

* Here, the moment of inertia tensor is assumed to be diagonal with principal
moments Ix , Iy, and Iz . Gravity gradient disturbance torques are included
in the left-hand side of Equation (27).

#*For |A| <90 deg, X is the subsatellite latitude (a minus sign denotes the
southern hemisphere); for {A| > 90 deg, 180-A is the subsatellite latitude.

14



and environmental models (particularly for the magnetic field) are required to
evaluate the control system performance, most of the characteristics of the
HCMM on-orbit control system are contained in the relatively simple model
described by Equation (27). For a given latitude and control gains, the zeros
of the characteristic equation

det (M(S)) = 0 (28)

may be computed. In general, there are four roots to the fourth-order Equa-
tion (28). In the absence of control torques, these roots are purely imaginary
tiwn and ‘-‘iwo , where w = h/\/I—E is the nutation frequency and w

is the orbital frequency. With nutation control, but no precession control

(kn < 0, kp = 0) , the roots are complex conjugate pairs with negative real parts,
and the system is damped and stable. The nutation damping time constant, Tp ,
is shown as a function of latitude in Figure 3; at the equator (A=0) Tp ~ -0.6/ky .

23 »

&

in

b

NUTATION TIME CONSTANT (MINULES)

&

-0 -0 =70 ~60 =30 =0 -0 -20 -0 0O 10 20 30 40 S50 60 70 80 %0
SOUTH LATITUOE NORTH LATITUOE

Fig. 3 HCMM Damping Time Constants for kn ==0.33 J*s
and kp = =0.011J
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Routh's criteria may be applied to Equation (28) to obtain the necessary condi-
tions for stable precession control as

2 . .
[4w°uy-%)+hw°-sm2k(mhw°+kg]

x[wza -I)+huw +ik w sin22)]
o'y 2z o 2 n o

2 (29a)
1 . 2
+—k w sin 2X(2k w +k)>0
2 n o n o P
-4k sinzk[(l -1 w2+hw +-1—k w sin 2]
n ¥ x) o} 0 2 n o
2 2 .
-k cos A [4([ -[z) W +hwo - (2knmo +k ) sin 2]
8 y ° P (29b)
-2k W sinzkl:(l -1 -I)w +h=-k sin2i]
n o y x 'z To n
2 .
- ; -1 - ) 2
(2kn w + kp) cos” \ l:(Iy [x Iz) w  + h + kn sin 2X]
kn<o (29¢c)
For HCMM,
h>> [4(y - Iz) wol
B>> |(Iy - Iy) @l (30)
]kpl >> | 2knw |
and Equation (29) may be rewritten to good approximation as
ha, - kp sin 21> 0 (31a)
2
-k W (6tan“A+1) -k >0 (31b)
n o p
< 31
kn 0 (Slc)

16



In Fig. 4, the dotted line shows that the mission attitude (pitch = roll= yaw = 0)
is a position of stable equilibrium even in the absence of active precession con-
trol although the time constant is too long (~ 120 minutes) to counter the effect
of typical disturbance torques. The dashed line shows the precession time con-
stant for the control law defined by Equation (25). For the HCMM parameters,
this precession cbntrol law is ineffective in the southern hemisphere and un-
stable between 14 and 76 degrees south latitude when the spacecraft is traveling
north. (The northern hemisphere is the region of ineffective control system

performance when the spacecraft is traveling south.)

0

ean oo "

J necTton !

- CORras. 1]
o : ... ./-Mnui.-::a LY
N 1 '-.

120 !
|

I

1

L - H
1

Fig. ¢ Precession Control Time Constant as
a Function of Latitude (Spacecraft is
Traveling North)
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Consequently, the HCMM control system deactivates precession and nutation
control (i.e. sets kp = ky = 0) whenever [Bz/By|> 1.4 . This "magnetic
blanking" results in active control only within about 35 degrees of the equator.
Equation 31 suggests that 2 more effective procedure might be to decrease the
magnitude of kp when sin 2) <0, viz. when Bsz < 0. The solid line in
Fig. 4 shows the precession time constants that result from modifying the con-
trol law by halving the precession gain when Bsz < 0. This modification ex-
tends the region of effective precession control to 20 degrees latitude and limits
the unstahle region to between 35 and 55 degrees south (north) latitude when the
spacecraft is traveling north (south). Detailed parametric studies can thus be
conducted to establish near optimal gains and control laws and to obtain regions
of stability by solving algebraic equations without the need for time-coansuming

simulation.

The simulator was used to compare the performance of the modified and nomi-~
nal HCMM control laws and to validate the predictions of the model. Fig. 5
compares the response of the nx"o control laws to a 5-degree roll angle error.
Note the extended periods of magnetic blanking for the nominal control law and

the brief periods of ineffective control for the modified control law.

Although the response of the modified control law to transient errors is excel-
lent, numerical simulations of steady-state conditions showed substantially
poorer performance than the nominal control law. This result indicated the
inadequacies of the simplified model using a polar orbhit and dipole magnetic
field at high latitudes. Consequently, magnetic blanking, with le/Bx[ >2,
and an increased precession gain, with kp = -0.022J , were incorporated into
the modified control law to avoid counterproductive torquing at latitudes above
45 degrees where the model ié inadequate. The performance of this control
law is somewhat better than the nominal control law; however, additional sim-
ulations and analysis are required to make a definitive comparison of the two

control laws and to obtain optimum control law parameters.

18



These results demonstrate the need for both analytical and numerical studies
in the design of attitude control laws and may be used to improve the attitude
control performance of future, high-inclination AEM. Further analytical
studies are also needed to optimize the attitude control performance of mis-
sions such as AEM-B, scheduled for launch in March 1979, at an orbital
inclination of 50 degrees.

MAGNETIC BLANKING

ANGLE BETWEEN SPACECRAFT Y-AXIS AND
NEGATIVE OABIT NORMAL (DEG)

EQUATOR
NORTHBOUND EQUATOR SOUTHBOUNDO
0 T T ) ] T
4] 20 40 60 80 100

TIME (MINUTES)

Fig. 5 Nominal (dashed line) and Modified (solid line) Control System
Response to a 5-degree Roll Angle Ex:ror
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APPENDIX

In this Appendix an analytical solution for the pitch rate as given by Equa-
tion (15b) is obtained. Recall that

2
QkZIB (é -1 cos Zth) p(t) + 2k B2 Wo =0 (A1)

B(t) + 33

Straightforward application of the method of variation of parameters leads to

the solution

. Wi (S 1 )
= P> bS8 R P Y3
p(t) = exp [ S (9 wot 5 sin 2wt

(A=2)
t
. b .§ [ w1 2 l 1 )
X\p@) + gwowlfdt exp [2(:;<9th P sin Zwot}§
0
with
2
- = 9B _
Rl (A=3)
In the asymptotic limit this becomes in more compact notation,
: = lim p(t
Pss(t) ; Lm p(t)
p I
=u1jf1n {c exp [-(au - bsin u)] fdul exp [au' - bsin u']s w, (A=)
0

20



where

a-swl
Sw
o
wl
b=3w
o (A=9)
c=4w1
9w
o
u=2w t
o]

We may obtain the Fourier expansion of exp (b sin u) by noting (Reference 3)
that

[ -]
exp(*b sin.s) = Io(b) + 2 Z (-)m Iom(b) cos 2ms
me=]

(A=6)

o m . .
=2 Z (=) I2m+l (b) sin(2m + 1) s
m=)

where Im(b) is the modified Bessel function of the first kind. Substituting
Equation (A-6) into the integral in Equation (A—%), we obtain

u
fexp (au' - b sin u']du' = exp(au’) :Io(b)%
o .
w m Izm (b) (A=T)
+2 2 (=) T———.,[a. cos 2mu' + 2m sin 2mu'] ’
m= a“® +(2m)”~
o I (b) u
2 (P (asin @m + Ly’ - (2m + 1) cos(2m + ]! |
m=0 a +(2m+1) 1 0

21



Only the contribution evaluated at the upper limit of the integral contributes

to Equation (A=4).

It is obvious from our earlier observations (Equation (11)) that {nss(t) = w;S -«

must tend toward an average value close to w, . We may isolate this constant

term by noting that

2
- __l__ 8 (A-8)
a +n a(a +n)

and recasting Equation (A-7) as

u
f du' explau' - b sin u'] du'
o

1 -]
= ; exp(au).{Io(b) +2 n;]_ (=) Izm(b) cos 2mu

(-}
- - m 1 - -
2 mz=o (=) I?.m+l (b) sin(2m + 1) u} (A=9)

[ -]
+i- exp(au) %2 Z (-2 —2—2-9——5[-2—:3 cos 2mu + sin 2mu}
m=1l a + (2m)

|

o«Q
+2 Z =™ 2m 2 dm+} sin(2m + L)u + cos(2m + 1) u
2 2| a s
m=0 a +(2m + 1)

+ terms which remain bounded when u—=,

22



The first term in Equation (A-9) is simply iexp {au - b sinuj . Thus, Equa-
tion (A-4) becomes

-]
pgs(t) = % Wo [1 + exp(b sin u) ’2 Z (=) 2m ‘E——zl-:-l-cos 2mu + sin 2mu]
° l m=1 a + (2m)
(A=10)
+2 z (=™ Zm 1 3 [2m 1 sin(2m + l)u + cos(2m + l)u]}:l
m=0 a®+(2m + 1) a

It is now a simple matter to substitute Equation (A-6) into Equation (A-~10) to
obtain the Fourier series for f:ss(t) . Of particular interest is the secular

term, for which we obtain

<pss” =

UlloP

o i

. Swo . 2 N

5 2 , ——-Im<b)] (A-11)
m=l a +m

o

For wj==o0 (weak-coupling limit), the series appearing in Equation (A-11)
also vanishes and, hence, <pgg> =§w° in this limit. For wj--« (strong-
coupling limit), the series appearing in Equation (A-11) can be evaluated most
easily by expressing the quantities appearing in Equation (A=%) as a Taylor's

series and integrating them. This leads to

<pgg> =11 + Z (202 (Zm-l) (A-12)
n=1 m=l zm[(za) + (2m) ]
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In the limit w *+»(j.e., aandb+=),

2 4
SGNET) PR VI RDEIETEI g U 5T
<Pss® ~ 73 [“2(5) +2-4(5) *2-46\5 :l (A=13)
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