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Abstract: Exchange of nonstatic pions between a nucleon and J(1231) isobar in the reacions NN — NN
and NN — Nd 13 studied near the pron- and J4-production threshoids. The nonstatic nature ot the
exchange permuts the repeated formauon and decay of a nearly on-shell isobar as the pion
shutties back and forth on its mass sheil. The mechanism modifies the analysis of NN elasuc and
4 production processes at intermediate range (= L.V '). We examine these effects in a relativistic
theory, restricted to spiniess perticies, based on the covaniant off-sheil formalism of Blankenbecier
and Sugar. Three versions of this theory are considered. invoiving intermediate nucieon-isobar
propagation taken off the mass shell (i) symmetrically. (ii) nonsymmetrically, and (iii) in a
quasiparticie formuiation. For the mechanism considered here. a clear preference is found for the
noasymmetrical prescription. Our resuits indicate that the nomstatic muitiple-pion-exchange
mechanism shouid be inciuded in quantitative analyses of NN — NN, Nd in the threshoid regions
for pion and 4 production. .

l.lmod.nuion

Efforts 10 derive a workable nucieon-nucieon potential from considerations of
meson exchange have, in the past, often been based on one-boson exchange modeis 5.
This in turn has usuaily required the introduction of scalar, isoscalar and isovector,
g-mesons, whose roie has been to simulate the effects of two-pion exchange, or, in
general, to take care of the behavior of the NN potential at intermediate ranges
=~ M ", since clear evidence for the existence of a meson of the desired properties
has never been established, this procedure has become less and less satisfying. It
is therefore gratifying that, more recently ! = %), these two-pion exchange effects have
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492 H. J. WEBER er al.

yielded to treatment through consideration of box diagrams invoiving intermediate
4 (1231) isobars (see fig. 1). These diagrams with N4 or 44 intermediate states are
then to be inciuded in the NN potential for subsequent iteration between exclusively
NN states.
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Fig. |. Ingredients in theones of the NN force. (a) One-pron and other one-meson components of the
force. (b) Box diagrams with intermediate .1(1231) isobars (denoted by heavy lines). (c) Pion crossing in
diagrams with intermediate 1sobars and nucieons.

The calculation of the box diagrams of fig. | b has thus far been considered for the
case of static and nonstatic pions. The nonstatic t-channel dispersion theory involves
large extrapolations of the reievant pseudo-physical NN — nr ampilitudes to
physical =N scattering amplitudes '. Furthermore, the effect to be discussed in the
present work cannot be readily inciuded in this model. The static treatments (e.g.
s-channei dispersion theory of ref. 2)] are more in line with the usual attitudes of
potential theory taking the baryons to have mass much larger than any other energy
which enters into the problem. [n particular, the pion exchanges are presumed to
* take piace between roughly “‘equai” mass baryons and thus the pions are assigned
zero energy in the exchange. These pions are consequentiy far off their mass sheli.
leading to the characteristic Yukawa estimate that the contribution of a particular
exchange diagram comes predominantly at a range given by the reciprocai of the
transferred mass in the diagram. Furthermore, because the various intermediate
energies are taken equai, the resuiting NN potentials have no time dependence.
suiting them for ready use in conventional, nonreiativistic potential theory.

The present work is based on the consideration of dynamic effects for the exchanged
meson, which, since the 4-mass permits the isobar to break up into a nucleon and
pion. M,— M, > M_, can in fact take place with the pion on its mass sheil and
therefore with unrestricted range. Thus, as in the graphs of fig. 2a. the pion can
shuttle back and forth repeatedly between the two baryons, mediated by an isobar
formation and decay. This modifies the analysis of the NN potential at the range

' For a recent review. see ref. °).
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Fig. 2. The primary mechanism under consideration here for (a) NN — NN and (b) NN —= Nd processes.

The fact that the isobar-nucieon mass difference is greater than the pion mass. M — VM, > W, means

that the pion can propagate on-shell. thus making its repeated exchange possibie already at the levei of
ranges = (V'

M ', since two of the pions. the first and the iast. must in any event be transferred
essentiaily statically in going from and to the initial and final NN contiguration.
Cleariy, the same mechanism can occur for NN — N4 reactions (and. for that
matter. in N4 — AN processes 7-%), which we do not study here], as shown in fig. 2b.
In fact. one may generate the relevant sequence of graphs for both NN — NN
and NN — 4N from the coupied integral equations for the latter process. as shown
diagrammaticaily in fig. 3.

At the present stage, we wish to expiore the consequences of this phenomenon
ina model case in order to allow for its eventual inclusion in a more compiete analysis
of the NN force. We shail therefore take spiniess and isospiniess particies. but with
masses M,, My, M, appropriate to the physical situation. We ignore graphs. such
as those of fig. lc, in which two pions are simuitaneousiy present: their contributions

(a} TNNeNN , : . ii H

Fig. 3. Integrai equations for (8) NN — NN and (b) NN — N4 reactions extracted from the diagrams
of fig. 2, and written formaily in egs. (21) and (13).
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have been shown %) to involve significant cancellations at momentum transfer
g = 3-5 fm™', and we negiect diagonal N4 and 44 interactions whose coupling
constants are poorly known. We further do not discuss the exchange of mesons other
than the pion. nor do we give a compiete analysis of the NN and N4 coupied channels
~ restricting ourseives instead to the recurring N4 configuration of fig. 2. for which
the nonstatic muitipie pion exchange effects should be maximal. Precisely because
of the singularities which arise when the exchanged pions are on sheil, and because
of the expectation of slow convergence for the successive orders of the diagrams in
fig. 2 which is inherent in our mechanism, it is important to start by testing it in as
simpie a situation as possible. Qur restriction to scalar particles preciudes a compar-
ison with the dispersion theoretic results mentioned in the foregoing or experimentai
data on NN — N4 and NN scattering processes. Subsequently. we hope to study
the more reaiistic prdbiem with nucicon spin and isospin degrees of freedom. full
meson exchange. and coupled channels.

[n dealing with the integral equations imptied by tig. 3. we are immediately taced
with a central technicat problem. namely whether to handle them as fully refativistic
Bethe-Salpeter equations (see. for exampie. ref. *)] or to reduce them to covariant
equations with. however. three-momentum varniables in the manner of Blanken-
becler and Sugar '%). We have chosen the latter route since. atter partial wave analysis.
the resuiting integrai equations involve one variable instead of two, which vastly
simplifies our analysis. Such an approach is designed to yieid a propagator guaran-
teeing unitarity for the two- and three-particie sectors of the probiem under appro-
priate conditions. However, this constraint is naturally insufficient to determine the
full structure of the equations. which would require more dynamical input. Within
the approach of Blankenbecier and Sugar (see aiso refs. '!+12)], after determining
the on-sheil form of the propagator one still has freedom in choosing its off-sheil
behavior. Two well-known options are to ailow intermediate particies to go off the.
mass shell symmetricaily '%) or nonsymmetrically !3-'4). Alternatively. one may
formuiate the entire probiem in terms of a quasiparticie approach '*), in which
inter afia one characterizes the N4 propagation in terms of the energy variabie and
propagator of the isobar subsystem. As we shail see, these various prescriptions {ead.
in some instances, to rather different numerical resuits. For the present probiem.
considerations based on symmetries or on dynamics can, as we shail see, help to
motivate a preference amongst these various options.

Z. Dymamic equatious inferred frooe two-particie umitarity
The coupled integral equations which sum the diagrams we wish to consider for
the NN — N4 ampiitudes can be easily constructed by referring to fig. 3b. Using
the total and relative momentum variables .

P’PL‘*‘P: = p'l +P'21 q= &(Pl -'Pz), S= Pl, (l)
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the relevant Bethe-Salpeter equations are

q1Ts)g)> = <{q'|B,(s)lg> + f(q’l V29lq"YGolq”; 5)q 1 To(s)lg)d*q" (2x)*,

(2)
1Tas)q) = {q'|Bos)lg)+ '[ (q1V2:1(8)g")Golq” s 5)Xq" T\ {s)gdd*q” /(2m)*,
with
{p1P3|BUSNp P2 = 99 g=0" (3)
2 ' (py=pP=Mr+ie’ '
g
PipalVidslpip2) = : (4

Dy —p'l)l—M:+it:‘

where g and g’ are the #NN and nNJ4 coupling constants. respectively. Using the
conventions of Bjorken and Drell *), we shall consider these equations in the two-
particle c.m. system. for which ' '

P = s;0) q=(0:q)
py=(E;iqh  pp=(Es: —q) (5)
py =(E\:q)  py=(E} —q)

The propagator G, appearing in eq. (2) is now to be determined {rom unitary as
suggested by Blankenbecier and Sugar.
A comparison of the unitarity refation

T(sT)=T(s") = -iT(s’)((Zz)‘J(P,-—g: p]T(s™) (6) |
where S, = &, —i{(27)*H(P,— P)T, with the paralle; r;ult
T(s*)=T(s™) = T(s*)Gols*) = Gols )] T(s™) )]
from eq. (2) yields for the discontinuity Go(s ") =Go(s ™)
disc Golpips: 5) = —i27)’8* (py* ~mi)5 ™ (p3* —mei). @)

Writing a dispersion reiation for the propagator, with the minimal retention of this
physical cut only, we have

8*(py? —mi)3* (p3* —m3)

Golpipy:s) = —2n ds. 9

S =—s=in
so that
R (4 1 1
Gold; 9 = =gz 3ao NEY Ty (10)
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We note a point which will be of central importance in the following, namely
that other than in eq. (10) the energies £ and £7 of the two intermediate particles
have here only been fixed for the on-mass-sheil situation. Thus we are left with an
ambiguity as to how to determine them in ¥ when the propagator is re-inserted into
eq. (2). In the following we shall always choose the nucieon intermediate energy in
V,; and the phase space factor to be fixed by its on-shell value

Edq) = (Mi+q%)3, (1

whereas the isobar energy is determined by one of two prescriptions: (i) the ""symme-
tric” situation in which the isobar is also put on sheil

E q) = (s,+q¢%t, s, = M3, (12a)

and (ii) the “nonsymmetric™” case where the isobar energy is fixed from energy
conservation at the intermediate stage,

EJq) = (s,+¢)Y. s, =5-2sEy+Mi (12b)

It is important to note that the nonsymmetric prescription has two advantages over
the symmetric one. und is therefore much to be preferred. Firstly. by denving sutfi-
cient energy for 4-production in the intermediate state in the subthreshold situation.
it prevents an artificial appearance of pign on-sheil propagation there. Hence the
threshoid singularity in ¥, is not reached in the integral equation. while the on-sheil
choice, eg. (122) always purports to allow for a true intermediate isobar. Secondly,
by providing intermediate. off-shell phase space appropriate to the energy of the
“isobar’’ produced above threshoid. the nonsymmetric choice yields suitably time-
reversal invariant amplitudes. This is expressed. for instance, in the symmetry of
the resuiting NN — NN amplitude, which is not present for the prescription of
eq. (12a). This consideration is borne out by our numericai resuits. Despite the clear
preference for the nonsymmetric choice, in which only the nucleon is piaced on the
mass shell, we shail below show resuits for both cases for the sake of comparison
and in view of the fact that this ambiguity is weil known to be intrinsic to the ap-
proaches reiated to that of Blankenbecier and Sugar '9-'4),

We now rewrite eq. (2) in an explicit form, taking advantage of the symmetry in
B, and V;; which is present for the spinless case and which permits us to decouple
the integral equations triviailly. We obtain

, - 99 _ g?
{(F1Ts)ie) ‘ IMi—M2—2EEgt2g-q IM§+34—M§-2£:,£','.+24'.¢.+€8
Ei+E, L " dq”
“IEE; ErEpi—s—in <t Mgy "

for T, = T, = T. Partiai-wave analysis for 8, V and T in the form
(QITNE) = X {ITsNg)Po(d’ - 4) (19)
L=0
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then yields
1% B>~ s | CqlWitoNa”
{q1Tus)a> = <q'1BLla> — 577 . g”>
EN'"'E; l . q"qu"
x JELE, (Eu+EP—s—in {q I'I}.(S)lq>-(-i;t,7. (15)
where
99 2ELE, +M3-2M ,‘,)
'|B = — —— (2L +1 ( - . (16)
{q1B.lq> 244 Q. 2
2 , 2 2.
. g ZE.,EJ+M,—MN—.sJ—u:>
Vi(s = — —{2L+1) ( - . (17
{qlV(sNa> 249 QL 0

in terms of Legendre functions of the second kind. It is easily seen from eq. (13)
or (17) that the singularities in V. indicating pion propagation on the mass shell.
are encountered under the appronate kinematical circumstances (while. ol course,
in B they are not). This is a characteristic of the present approach. which is theretore
quite distinct from static approximations. Mercifully. from the point of view of
numerical work. the partial wave analysis tones down the impact of these singulari-
ties quite considerably. since they are then only logarithmic in character.

Despite the basically two-particle nature of the present approach. we must still
be concerned with the possibility of a three-particle intermediate contribution. at
least to the extent that it endows the isobar - and therefore our nucleon-isobar
propagator — with a width. This we introduce in a semiphenomenological way by

P-q
o Jummo -/

q

(a) (-1}
Fig. 4. (a) The seif-energy of the 4-isobar and (b} its decay vertex. as used (o incorporate the isotar width
into its propagator and hence into the Nd propagator G,,.

caiculating the seif-energy of the 4-propagator (or equivalently the 4-decay width,
see fig. 4), which in the usual way °) undergoes the replacement

L l
T SN o

with
kg’ 2 p2vd 2, L2v
I(sy) -g'. (M+K P+ (M + k)t = /s, (19)
4
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This in turn is introduced into G, the two-particle propagator. by taking

" {(MN-i-\/s‘,)l'. JSs > M+ M

{20)
& \/Sd SEM+M,

in eq. (15). These somewhat ad hoc procedures are improved upon in the quasiparticle
formalism discussed in the next section. which. however, is not a panuacea for all
the ills of the problem. as we shail see. Lastly, we note that the amptlitude for the
NN — NN precesss is easily obtained from that for NN — Nd of egs. (13) uand ([ 5)
through

o |
T TNN=NN - — Blg"y N e —
QT sl f“' 9 SEE (BB s
x L@ TN g )d g (22 120

Before turning to the calculational results based on the method of this section. we
_ shall first examine the quasiparticie model for producing a unitary. three-dimensional
integral equation. in an attempt to treat the three-particle sector and sobar decay
width more properiv.

3. Dynamic equations using two- and three-particie unitarity

The quasiparticle approach '*) takes as its point of departure unitarity in both
two- and three-particle sectors and uses these to determine the dynamicai eiements
of the integral equations. which will here be taken in a coupled-channel form. The
channels in question wiil be those of the NN and Nd two-baryon states. in both
cases the second baryon will be viewed as a N composite. that is. the second nucieon
of the NN channet is a bound =N state having the mass of the nucigon. und the

_ NGaN A
ER 2, ————wrr: =T
0222oceoen®2 P 2k
or M ! BGT

Fig. 5. Diagrammatic representation of coupied integral equations in the gquasiparticie approach. The
dotted line represents the quasiparticie. a (xN) compouite which may be either bound. to produce the
nucieon. or resonating. to produce the 1sobar.

d-isobar is, of course, a N resonance. For reactions involving.two particles. we
have (see fig. 5)
P BIT(Np: x) = <p's BIBGSIp: ) + 2 J(p': BIB(s)p”: 7>

7

x4 (p"; sKp”: 1iT(s)ps 2>d*p” [(2m)%, (2, 8,7} = {NN.N4}. (22)
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The kinematic variables are particie momenta in the two- and three-particle c.m.
systems and unitarity conventions are as before. Since we now allow for contribu-
tions to unitarity from the three-particle sector, we must broaden our considerations
concerning discontinuities according to '2-!9)

T(s*)~T(s") = T(s')(f!(s;')-g(s')] T(s™)+ T(s*)¥(s*)B(s*)— B(s™)])®(s™)T(s~)

(23)
leading to
P PUT NPy p) — <P 1P T (s Pyp22
= =i [(Zm‘éf P—p;=psXpipaiT(s pypsd2m*a T (py* = mi)o “(py? = m3)
x <pypaiTis N, p:yd*pid*ps(27)®
=i J (221*0(P = py = p3 = 3PP T(s NP p3ps)
x (27020 "(py 2 =m3)0 "(p3 —m30 " (pyt —m3)
x {pypp3ITis )pyp2>d*pid*pid*ps/(27) 2. (24
The three-particle break-up amplitude which has been introduced here is given by
P PAUTINPPPs) = VEL Pipa TSN P ta, ), 125)

where the summation is over the two-baryon subsystems. g is the propagator for
that subsystem shortly to be determined, and v, is the relevant quasiparticle dissocia-
tion vertex.

We now introduce the spectator assumption for the two-particie propagator.
assuming, in our case, that the (noncomposite) nucieon is aiways on its mass sheil.

S(p) = 25" (p* - Miglo,.. o, =m(P=p). (26)

Designating for first consideration the case in which the pion in the unitanty refation
is transferred between two different nucleons (fig. 6a), we can compare egs. (23)

T=L T=r
rgeigT g T

(@) ()

. Fig. 6. Two contributors to the right-hand side of the unitarity retation of eq. (23). one (a) involving
exchange of a pion and determining the interaction 8. the other (b) invoiving transfer on the same
baryon and determining the quasiparticie propagsator g.
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and (24) to yield for the interaction

<PIBs")p>—<pBls™)lp) = —iv2rd*((P—p—p)* ~MZ. 2D
It is then easy to show that
(P—p—p = M2 = (5= WA S5 = W +20,.,) (28)

where

W= Ey+Ey+w,,, = /PP +Mi+/p*+MSi+y(p+p) +M;. (29)

It is consistent with the restriction to three-particle states in this model that we
ignore **) the zero arising from the backward-going pion in the second factor of
eq. (28) to write

HP—-p-p)-M} = Hs— W2, (30

[ ad 4

Hence the dispersion refation with minimal singularity structure yields for the inter-
action.
) 1 [disc {p|B(s") , w
<p|ms)|p>=ﬁf,—”—”—>ds = ¢ _ (31

- 2
s —=s—ig Wy py W =s5—1iF)

[t should be noted that, above production threshold. the singuiarity arising from the
vanishing of the denominator in the interaction of eq. (31) can be encountered in
the fully off-shell situation even for the driving term in eq. (22). Although this does
not appear to cause any basic difficuity in the theory, it does lead to much larger
Born terms for the NN — Nd amplitude than those of the method discussed in the
previous section, which are reiated directly to Feynman diagrams. We have therefore
treated the result of the quasiparticle approach with some wariness.

For the case of the pion transferred on the same baryon line (fig. 6b). the spectator
assumption immediately leads to the resuit for the quasiparticle propagator

Ao} )—g(o]) = —2i5" (0, — M)~ igia} o(a})

Er +wr 2 d‘Pu
* |3 o M~ (Eytay o, b=Na G2
which can be solved approximately using the N/D method to give
E . +o,. o d-lp" -1
= |0, — M} + | L—L

We now combine egs. (22), (26), (31) and (33) and restrict our consideration to
intermediate N4 channels only, in order to focus once again on the case of the
diagrams of fig. 2. Again expioiting the symmetry of the spinless case, we arrive at '

* Eq. (34) allows us to0 identify the present coupling constants with those of the previous section when
we compare the corresponding integrai equations in the static limit.
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(qITisNe> = ww‘[fgj fgjj:jf;: o 7
J' " [(;:f"; i: =ess ) o zz — 07K TIsNe) s é:;, (34)
for the NN — N4 amplitude, and
(QIT™"N(s)ig) = -J'w””[‘(’h(_fﬂf:z“" :”')’;’_3_,.8]
E.. y(cr Kq 1 Ts)g) (‘2:”, (35)

for the NN — NN ampiitude. The partial wave anaiysis of these equations proceeds
as in egs. (14) and ¢15) and can be carried out anaiyticaily aithough it does not lead
directly to simple. weil-known forms as in egs. (16) and (17). In dealing with the
isobar propagator g(a,) (the nucieon case no ionger enters for the diagrams of fig. 2).
we note that the imaginary part of the integral in eq. (33) is simply the isobar width
of eq. (19). We take the real part to be approximated by a constant which renormalizes
the isobar mass to its observed value,

go) = [o,~Mi+i/a IMa)]™". (36

Egs. (34) and (35) in the quasiparticle method are to be compared with egs. (13) )
and (21) of the previous section. [n the static limit (My = M, > M,) they are
identical. Away from this limit they are distinguished by the fact that the quasi-
particle method elects to introduce a specific form of the clustering property °~'3:19)
directly into the dynamic equations, so that only the isobar invariant energy appears
in she propagator. whereas in egs. (13) and (21) the total (nucieon pius isobar) energy
enters. The essential computational difference between the two approaches comes,
however, from the off-energy-shell singularity in the driving term of eq. (34), as we
have noted above. This feature ! tends to lead to much larger values for this term
than are inferred from the corresponding one-pion-exchange Feynman graph, the
two resuits approaching each other only very near the static limit. [n fact, in the
off-shell limiting situation ¢, ¢ — 0, while s = 4(M, + T3 ™), one easily sees from
egs. (13) and (34) that the ratio of the dmnngtetmsofsects.z and 3 is approximately

(L=2TR"/M )", 37

so that even at quite low energies, say T™ = 50 MeV, the quasiparticie method
gives a much larger resuit.

' This consideration should aiso enter to some degree for applications of the quasiparticle method
wum“).thonghumnuymubclummthcu-ormeonmuuror:N

scattering '%).
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4. Resuits

In carrying out the present calculation, we choose particle masses to parailel the
physical situation for the aNd system, M, = 140 MeV, M = 939 MeV, M, =
1231 MeV. Correspondingly, the coupling constants are taken as g = 13.5 M_, as
implied by the usuai ®NN pseudoscalar value, g2 /47 = 14.6, and g’ = 3.47 M.
from eq. (19) with I(M?) = 111 MeV.

Numerical solution of the integral equations couid proceed by contour rotation
and matrix inversion or by the method of Padé approximants !7). We elected the
latter method which proved both straightforward and reliable. The diagonal approx-
imam was used. and six iterations of the series sufficed for solutions accurate to

: 10* or 1 : 10°. as checked each time by reinserting into the right-hand side of the
mtcgml equation and comparing. A gruphic way to see the consequences of our
mechanism was to go to the static limit.

QEVE,=2ME = @ +q%.  2EE,-Mi—=s, =g 4y (38)

in egs. (16) and (17) for instance, and observe the more rupid convergence of the Pudc
procedure.

We found that either Simpson or Gaussian integration was adequate, with about
80 to 100 points required and an upper limit of the infinite integration range taken
at 8 fm ™!, after which further increase by 30 *, or so in either parameter led to no
significant changes in numerical accuracy. Since the integration carries the inter-
action term ¥ through the pion on-mass-sheil singuiarity, the choice of the “infinite-
simal™ ¢ was of some consequence. Once a sufficiently smail vaiue was used, turther
reduction by one and two orders of magnitude produced numerical changa of at
most a few percent, and generaily less than | .

The largest effects of the nonstatic mechanism were seen in the L = 0 partial
wave, and we therefore concentrate on it. For L = 1, the amplitudes were adequately
represented. to within about 102, to {5°;, by their Born terms plus box diagrams
at the energies considered here (c.m. kinetic energy T5™ S 175 MeV). Well below
threshold, at 7{™ = 50 MeV. the highly off-shell NN — V4 amplitudes given by
the approach of sect. 2 with the symmetric or nonsymmetric prescriptions {egs. (12a)
or (12b)] are very similar, as seen in fig. 7a. We have aiready noted that the non-
symmetric procedure is to be preferred for its observance of time-reversal invariance
in this probiem. a property validto [ : [0* at T;™ = 50 MeVand | : 10%at T5™ =
175 MeV in that case, but violated by 50 %/, or more in certain instances at 175 MeV
when the symmetric prescription is used. In ail resuits based on the method of sect. 2
at Ty™ = 50 MeV, the amplitudes are adequately approximated by box diagrams
for the off-energy-shell NN — N4 case. This is much less true for the resuiting
NN — NN amplitudes, even at 75™ = 50 MeV, shown in fig. 7b. The NN — N4
resuits at |75 MeV, see fig. 8, have much iarger qualitative deviations between the
symmetric, nonsymmetric and static prescriptions of egs. (12) and (38) than do the
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reactions below production threshold at 75™ = 30 MeV and tor the L = O partal wave. All resuits are

foryg = 2tm ' “Born™ refers to the first Jiagram of tig. 2b and "hox™ to it sum with the seeond iur

NN — N1, or to the tirst wraph ot fig. 2a tor NN = NN. The tull summauon ot the geaphs in tig. 2 Lichds

the ampinude fubeied 7. Solid lines reter to the nonsymmetric presceiption of ey. + 1 20 dashed lines @0 ihe
STRLC case. ey, (3X), and dot-dush lingy (0 the symmetric cnowe, ¢y, tila).
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Fig. 8. Fully off-energy-shell NN — N4 amplitudes above production threshold for 73™ = 75 MeV.
Other definitions and conventions as in fig. 7.
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Fig. 9. Fully otT-energy-shett NN ~ NN umplitudes above production threshold Tor 7™ = 175 Mev.
Other definitions and conventions as tor tig. 7.
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Fig. 10. Fully off-energy-sheil ampitudes beiow production threshoid for 75® = 50 MeV in the
quasiparticle approach ' ?) discussed in sect. 3. Other definitions and conventions as (or fig. 7. except that
here solid lines referto NN —= Nd and dashed lines to NN — NN.
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helow-threshold amplitudes. This is. of course. as one would have expected tor the
dynamic mechanism considered here. However. for nucleon-nucicon scattering.
fg. 9. the differences are greatlv muted by the further integration over the propagator
and Born term. though they still amount to quantitative effects of 10“, or 20" .
We note that the nonsymmetric prescription for intermediate off-mass-shetl behavior.
which we belicve to be the greatlv preferred approach for the physical reasons of
time-reversial invanance and the onset of isobar effects sketched below eqy. (12).
generally differs quite substantially from the resuits ol the conventional static
approach.

Lastly. we turn to the amplitudes in fig. [0, given by the quasiparticie methad of
scet. 3. These are shown only for the 50 MeV case. since the off-encrgy-shell singu-
larity in the driving term of that method. discussed in connection with cy. (37).
makes the approach highly suspect for the present applicanon when used above
production threshold. Even at 50 MeV. this same consideration leads to very ditferent
results from those obtained previously. This arises essentiatly trom the tactor of
¢dg- (3N inthe NN — N.4dnving term. and its square in NN — NN elasue scattenng.

We conclude that nonstatic effects for muitiple pron exchange with repeated
production and decay of intermediate isobars vield sigmificant quantitative, and
occasionally qualitative. differences from the conventional approximation ot Born
terms (for NN — NJd) or static box diagrams. They should therefore be included
in more complete calculations which take into account spin and isospin. the exchange
ot heavier mesons. and compiete coupling between NN and N4 channeis.

One of us (J.M.E.) wishes t0 acknowiedge with thanks the kind hospitality of the
University of Virginia. where the major portion of this work was carried out. and
useful discussions with W. Kloet and R. Silbar. We are aiso grateful for the assistance
of the Computer Science Center of the University of Virginia.
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