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ABSTRACT

Title of Thesis: PION PRODUCTION IN NUCLEAR COLLISIONS
Malcolm David Shuster, Doctor of Philosophy, 1971

Thesis directed by: Carl A, Levinson, Professor of Physics

Current Algebra and the equivalence of the pion field and the diver-
gence of the axial-vector current on the pion mass shell are applied to
the study of pion production in nucleon-nucleus and nucleus-nucleus col-
lisions. 1In the soft-pion limit for nucleon-nucleus coliisions a sim-
ple form for the pion-production cross~section is obtained which when
averaged over projectile and target spins is proportional to a single off-
mass—-shell nuclear amplitude. When all final nuclear states are summed
the pion production cross-section is found to be proportional to the for-
ward scattering amplitude of the projectile-target system off the energy

"shell by an amount essentially equal to the pion energy. WNon-relativistic
dispersion relations are used to continue the production amplitude back

to the pion -mass shell. The physical amplitude is shown to be given
largely by the DWBA approximation with an effective potential for pion
production. This potential is applied to the study of pion production in
nucleus-nucleus collisions. Expressions are derived for the pion-produc-
tion cross—sectioﬁ which turn out to be sensitive to the real well depth
of the nuclear optical well. Some numerical results and a comparison with

experiment are presented.



Myself when young did eagerly frequent
Doctor and Saint, and heard great Argument
About it and about: but evermore

Came out by the same Door as in I went.

—=Edward Fitzgerald (1809-1883)

(after a quatrain by Omar Khayyém

" (ob. ca. 1123))
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PREFACE

A sufficiently large amount of insight into the physics of the
nucleus has been gained from the study of the interactions of ele-
mentary particles with nuclei that it should be unnecessary to have
to plead very strongly for the study of yet another exotic or semi-~
exotic reaction. But interestingly enough very little experimental
work has been done on pion production in nuclei.

There are perhaps several reasons for this. At the experimental
end, people with an interest in nuclei generally dp not have access
to machines able to excite particles above the pion production thres-—
hold. Conversely, the people with the machines seldom show any inte-~
rest in nuclei. From the theoretical standpoint too, there was little
reason to study the reaction since a basic understanding of the pion-
nucleon interaction had come only recently. But the theoretical
and experimental situations are changing and with the building of
the meson factory at Los Alamos and several intermediate energy
machines such as the cyclotrons at the University of Maryland and
the University of Indiana there should become available in the near
future a wealth of information on the interaction of pions with nuclei
and certainly of pion production.

The great utility of pion production as a probe of nuclear struc-
ture lies in the pions substantial mass of 140 MeV. Thus pion produc-~
tion provides information on very highly off—mass—shell nuclear matrix
elements. Thus we may hope using pion production to distinguish between

various phenomenological potentials—-~we refer especially to the very



iy

ambiguous choice of parameters for the nucleus-nucleus optiéal potential
—-which give identical results on the mass shell. Before discussing

these in greater detail we review the theoretical developments leading

up to the present work.
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HISTORICO-PRACTICAL INTRODUCTION

Understandably, following the spectacular success of renormalized
lagrangian quantum field theory in describing relativistic electro-
dynamics, the first attention given to the pion-nucleon interaction was
to determine the nature of the interaction lagrangian.

The desire for mathematical simplicity narrowed the choice to two

forms, a pseudoscalar coupling,

st = =g (T Tho0). Poo

and a pseudovector coupling,

Lovne -3 (Teo¥, T Hio). 4B 6

-
with‘P(x), the nucleon field, (P(x) the pion field, and % the nucleon
isespin operator.

From the first, certain unpleasantnesses were associated with the
pseudovector coupling, of which the lack of renormalizability was the
most obvious, and so the pseudoscalar coupling gained the wider acceptance.
The choice was unmeaningful, however, since the coupling constant was
very large (%?;/4-11' =15, as compared to &lem =1/137 for electrodynamics).
Aperturbation expansion in the fashion of quantum electrodynamics was,
therefore, unthinkable, not that attempts weren't made, of course, and
the further study of the strong interaction, of which the pion-nucleon
interaction was the most accessable part, was channeled towards re'gimes
which avoided the direct solution of the equations of motion, namely,

the study of higher symmetries and dispersion relations.



From the practical standpoint the weak inferaction of nucleons
was better understood. The beta-decay process in nuclei owned a greater
mass of information, which, along with the measurement of the neutrino
helicity and the study of the beta-decay of polarized nucleons in the
late 1950's, unambiguously established the form of -the weak interaction
known as the V - A theory 2 . The effective lagrangian was determined
to be the bilinear product of weak currents, which were the sum (earlier
the difference, hence, V '"minus" A) of the vector and axial-vector
currents, each of which contained hadron and lepton pieces .3 . Thus,

the weak decay of the neutron was described by the amplitude

(el In} = % et Thalah <?l];,+mlw)

- + +
= & (Tlag* (W ) NS+ A 1y

and, for the small momentum transfers present in beta-decay,

<PV lny ¢ Gy GPYY, U

KA @S = Fa TPLTum)

With the scale set by the leptonic weak current gy and gy have the

values 1.00 + .02 and 1.18 + .03, respectively. Since the coupling in

2

beta-decay is wvery small (G‘$10_5/M
nucleon

) one calculates confidently
only to first order sobered perhaps by the knowledge that the theory is
unrenormalizable.

Most remarkable was the discovery that 8, Was umity

i.e., that there was no renormalization due to the strong



3
interaction of the nucleon vector coupling constant. This phenomenon
was known to occur for one other coupling constant, the electric charge,
which is the same for both leptons and hadrons. This lack of renormali-

.zation of the electric charge due to the strong interaction was known
to be a result of the conservation of the electromagnetic current.
Thus it was postulated that the weak vector current was conserved.
Further, it was pointed out that the nucleon weak vector current
belonged to an isospin triplet of which there was no known thir¥d compo-~
nent while the isovector piece of the electromagnetic current was
supposedly the third component of an isospin triplet of which the other
two components remained to be discovered. It was tempting, therefore,
to combine these three components into the same isospin triplét. This,

together with the previous remarks, constitute the hypothesisfof the

)4,5.

i

conserved vector current (C.V.C.
Furéhermore, the charges of the three isovector components of the

non-strangeness~-changing vector current (just discussed), along with

" the strangeness (the charge corresponding to the isoscalar piece of the

electromagnetic current) and the charges of the four strangeness—~changing
components of the vector current(not discussed) generate the algebra SU(3),
which was observed some years before to be an approximate symmetry group
of the strong interaction (usually called unitary symmetry) 6 . Math-

ematically speaking, defining these eight vector charges according to
- S AL 1.‘ - \
Q= JdRVaE®), €=1,.,2
they staisfy the equal-time commutation relations

. : 17k ,
[Qtl&), QJ(t)] = 4;_;‘1.1 Qk({;) OY R

-

with fiJk the (completely antisymmetric) SU(3) structure tensor. For



the isospin triplet of non-strangeness-changing charges, this amounts to
¢ Y N PN .« s .
[@“®), @)= 1€ 0% Gf=%3

. ijk s e . .
with € 3 the Levi-Civita tensor, which are the familiar commutation

relations for the nucleon isotopic charges Ti(t)

1. ‘. T i
T = Id’i Vool Z¢n | 4=42,3

Assuming that not only the charges of the vector current but
alsoc the charges of the total hadronic weak current generate an SU(3)

algebra, one was led to postulate further that 7

et J ok k
[@*w . @lw]=cf™ Qe

. : " GA=l ¥
[@u,Qie)] =ed e )

where the axial-vector charges(};(t), more commonly called the chirality,

are defined as

Qs (D) = SdSK Aj (£30 , €=, ..., %

For i,j = 1,2,3, these commutations have the expected form in terms of

the Levi~Civita tensor.

[ ca"tb>,®§ (£)= 1‘e"5"Qgce>
d3=693

\ . ) .‘h L
[, 0] = ce¥ Qe

The algebra of these three vector and axial-vector charges is simply
the SU(2)®SU(2) sub-algebra of the higher SU(3)@SU(3) algebra of all

eight vector and axial-vector charges. In the present work, of course,



our interest need not extend beyond SU(2)8SU(2). The above relations
are what is called Current Algebra.

The small renormalization of the nucleon axial-vector coupling
constant (1.18 for the nucleon as opposed to 1.00 for the leptons.)
occasioned the belief that the axial-vector current was somehow ""partially"

conserved. The source of the axial-vector current

D00 = 3R AT I

had identical quantum numbers to those of the pion and so, assuming
that the axial-vector form factor satisfied an unsubtracted dis-

persion relation, one wrote, unmindful of possible anomalous thresholds,

<BIDHO 16D = Bl jr ol (FHDo 1S
| My =g "
-l +
+- j ™ gx

™
(slua);, 7‘-'-8&

with q = 1{"— 1; , j;r the pion current, and l1r> the one pion state. Exper-

imentally, one knew the value of the pion axial vector coupling constant
br = & iptamlss
from the decay width of the pion for the reaction
4 +
T=— M +'Zﬁ‘

From

]_:,(x) = (0 +m,’;)c?,r(x)



it followed, assuming that the pion-pole term dominated the dispersion

relation, that one could write, if only approximately,
+ - +

and similarly for the other isotopic components. This was the content
of the hypothesis of the partially conserved axial-vector current
(P.C.A.C.) and it was assumed to hold for small momentum transfers,
lqzlﬁ_m?,-T » when the dispersive corrections would likely be surpressed
by the large masses occuring in the denominator. 8

Most interesting was the case when\d) and Hf)were one-nucleon states.

|
1
One had then for small momentum transfers that i
i
i

1D ter Iy = €2MG, Wty Tln)
and

<P'f€°>l"$ = V2 %\_Co) G.CP)\(;—UCM) ;

with gr(O) the pionic form factor of the nucleon for vanishing momentum
transfer, This number is not known experimentally, of course, but
gr(m%) is just the rationalized and renormalized coupling constant
occuring in the pseudoscalar theory of the pion-nucleon interaction.

If we assume thatthis is a slowly varying function of the momentum

transfer we are led to a very remarkable equation

P = RMmig,  &MmMzg,
%r‘°) E}F




relating the coupling constants of seeningly unrelated weak and strong
processes. This is the celebrated relation of Goldberger and Treiman
first derived from a totally different standpoint and it was found to be
co?rect within ten per cent.

These new ideas, which related the strong interaction to the weak
and electromagnetic interactions, could not be expected to pass by
without creating new interest in dynamical calculations of strong inter-
action processes which had for a decade following the failure of lagrangian
perturbation theory in providing the means for such calculations become
a b@te noire' of elementary particle physics. The first venture into
this area was the work of Nambu and LurJ'.e’z'10 , who noted that the
chirality (Qg (t) above) was necessarily conserved if the pion were
massless. Thisvmeant, considering the obviously related example of a
massless photon and a conserved electric charge, that one could calcul-
ate the amplitude for the production of (light-like) pions much as one
calculated the amplitude for the production of Bremsstrahlung. This
was what Nambu and Lurié did with remarkable agreement with experiment
for low energy pions.

More important for the present research is the work of Adler 11
who using P.C.A.C. rather than chirality conservation was able to de-
rive a number of theorems related to processes involving soft pions,
i.e., pions with vanishing 4-momentum. Especially important was the
demonstration that for soft pions only those Feynman diagrams in
which the axial-vector current insertion was made on an external leg
were non-vanishing. Those for which the axial-vector current replaced

the external pion leg on an internal nucleon line vanished identically.



8
This was equivalent to the statement that the soft pion couples to the
nucleon only through the divergence of the axial-vector current and that
for low energy (light-like) pions only the lowest-order Feynman diagrams,
namely, the Born terms, contributed. Strangely enough, the effective
pion-;ucleon coupling in this instance is pseudovector.

The approach of Adler and, especially, of Adler and Dothan 12 Ty
was very much akin to the earlier work of F. E. Low 13 , who derived
very similar results for the emission of soft photons (Bremsstrahlung).
The essential result of Low's work was that the Bremsstrahlung ampli-
tude depended only on on-mass—-shell nuclear amplitudes as the photon
4-momentum vanished. This meant, unfortunately, that the study of soft
nuclear Bremsstrahlung offered no information on off-mass-shell
nuclear amplitudes as had been previously hoped and would,presumably,
have provided some information on the nuclear interaction. This, not
surprisingly, was the outcome of the Adler soft pion theorems also
and it could not have been otherwise since in the Adler formalism only
the pion was permitted to go off the mass shell, Thus as the pion
4-momentum was taken to zero the 4-momenta of all the other particles
were readjusted in order that energy and momentum were still conserved
(as guaranteed, of course, by the translational invariance of the S~
matrix). This meant that in the soft-pion limit for pion production
all nuclear matrix elements were per force between states of the same
momentum and energy.

This particular choice of the soft-pion limit was not unique,
however, but one argued that different choices of the limit gave equi-

valent amplitudes to order m%. But this discrepancy could well be



large if the particles in the system had low-lying excitations

(M* -~ M £m,). This consideration was unimportant for elementary
particle processes for which Adler's approach was intended. Howéver,
when nuclei enter the stage, it is clear that soft-pion theorems
must be used with greater caution.

One drawback of the Adler approach was that working within the
formalism of lagrangian perturbation theory there was no practical
way to calculate the corrections to the soft-pion limit. This need
was filied by the work of Fubini and Furlan 14 "y who investigated
the soft-pion limit for pion-nucleon scattering within the framework
of dispersion relations. Here, they were able to establish a pre-
séription for choosing the soft~pion limit which most approximated the
physical amplitude for some choice of the kinematic variables. In
addition they displayed transparently Fpe corrections ;o the soft
pion limit coming from rescattering of the pion and intermediate exci-
tation of the nucleon. These were calculated explicitly in terms of
phenomenological scattering lengths and coupling constants.

At the same time it should be pointed out that Fubini and Furlan
examined matrix elements of the commutator of two axial-vector-current
divergences. This was equivalent to taking both initial and final
plons off the mass shell in the soft~pion limit of pion-nucleon scattering
as opposed to the earliest soft pion work of Adler in which only one
pion was taken off the energy shell. This permitted a greater choice
of the soft pion limit and it turned out that the best choice was to

let both pions become soft simultaneously.
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The approach of Fubini and Furlan is impractical for processes
involving nuclei because the number of excited states of the consti-
tuents of the reaction 1is forbiddingly large. It remained for M.
Ericson, Figureau and Molinari 13 in studying pion-nucleus scat-
tering to note the simularity of the dispersion relation of Fubini
and Furlan to the non-relativistic dispersion relation for pion-
nucleus scattering in potential theory. The soft-pion limit was
then identified with the Born term and the dispersive corrections
with the rescattering terms. The soft—pion limit, in fact, agreed
with the Born approximation using the charge-exchange potentia} for

16

pion-nucleus scattering derived from the study of pionic atoms.
: i

Most important, however, was the realization that the chief correction

to the soft-pion limit was the inclusion of rescattering corrections,

i.e., the distortion of the initial and final states. ?

In the present work we begin with the formalism of Fubini:and
Furlan and construct the soft-pion amplitude for pion production in
nucleon-nucleus collisions., Like the case of pion-nucleon and pion—
nucleus scattering we reduce two particles from the S-matri# element
describing the process but since there is no initial pion we reduce
the final pion and the incoming nucleon. In the limit of vanishing
pion 4~momentum we obtain the equal~time-commutation-relation and pole
terms of these authors. These are similar to the external axial-vec-
tor-current insertions of Adler but since we have reduced two particles
from the S-matrix rather than one we may keep all momenta fixed. Thus,
as the pion momentum vanishes the nucleon line must go off the mass

shell to compensate for the missing pion 4-momentum, (This is appealing
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from the standpoint of perturbation theory since the incoming nucleon
certainly goes off the mass shell after emitting a pion in that forma-
lism.)

Especially advantageous about this method is that no assumption is
made that the pion field and the divergence of the axial-vector current
are identical (P.C.4.C.). It is only assumed that these are equivalent
operators on the mass shell (which is rigorously true) and that the

transition from "soft" to "hard" matrix elements of the axial-vector

currentli can be effected so that one eventually recovers the physical
amplitude. It turns out that the commutation relations used are those
of the o-model (in which, in fact, P.C.A.C. holds) but no model-
dependent assumption is made, however, except, perhaps, that of the
linear realization of the equal-time commutation relation of the chira-
lity with the nucleon field.

The soft-pion amplitude provides an approximation to the physical
production amplitude. We discuss this in the approximation that only
the nucleon is allowed to emit a pion and obtain an "optical theorem
for the production cross-section relating it directly to an off-shell
nuclear matrix element, which can be identified with the nuclear
optical transition matrix element. This is the essential content of
Chapter I.

In Chapter IT we study the relation of the soft-pion limit to the
physical amplitude. We recast the dispersion relation of Fubini and

Furlan in the form of the non-relativistic Lippmann—-Schwinger equation

17

-

by a method described previously. Keeping only all intermediate

states of the (A+l)-nucleon system we recover the distorted-wave Born
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approximation and the effective potential for pion production. The
relation between the hard- and soft-pion limits is shown to amount to
the distortion of the initial state or the lack thereof.

In Chapter III we apply this effective potential for pion produc~-
tion to the calculation of pion production cross-sections in nucleus-
nucleus collisions. The production amplitude is separated into "exter-
nal" and "internal" emission pieces, corresponding, respectively, to
emission generated by the center-of-mass motion of the projectile and
emission generated by the Fermi motion of the projectile. An optical
theorem is obtained again for the production cross-section and the
difficulty of relating this cross—section to an optical potential is
discussed. Ekpressions for the pion-production cross—section in
nucleus-nucleus ¢ollisions are given in two approximations which are
the same near threshold. |

Numerical calculations are presented in Chapter IV. The pion
production cross-section for proton—C12 collisions as calculated
within the framework of Current Algebra agrees fairly well with
experimental data and is not very sensitive to details of the nucleon-
nucleus optical potential. For nucleus-nucleus collisinns there
are unfortuneately no data available for comparison and it is observed
that the calculated cross-sections vary widely for different possible
choices of the farameters of the nucleus-nucleus optical potential.

Conclusions and final discussion are presented in Chapter V.

Appendix A presents the conventions used in this work.

Appendix B provides a derivation of the commutation relations
used in the text, which have not yet appeared in the literature.

Appendix C discusses the problem of galilean invariance of the



Production potential.

Our discussion here 1s mostly prescriptive.

13
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CHAPTER I

Nucleon-Nucleus Collisions 1

'We begin by studying the reaction

a.
N(p,s) + ZA—» 77"(2) +f .1

in which a nucleon of 4-momentum p and spin s collides with a nucleus ZA
to produce a pion of 4-momentum q and a collection of particles f. a and
b are the isospin components of the nucleon and pion, respectively.l8
Except for the constraints imposed by the conservation laws f :Ls‘i arbi-
trary and may include, among other particles, additic;nal pions. iGenerally
we will suppress the spin—-or isospin-quantum number of the nuclesn. The
initial state will often be denoted by a single inde# i. The reaction is

illustrated kinematically in Figure 1.

The S-matrix element describing this process,

&F 1w loub | (9,55‘2”‘ Gm Y

. 4 c(#)
= ~ilam*§ (g +g-p-p) Wi (.2

defines the Lorentz-invariant amplitude?ﬂﬂ(i—»npf) given by 1

<R wheun 1Tl 2M Y U (ps)

Here, 3(0) = ¢(x) (—i%x - M) is the nucleon current and qi(x) the

nucleon field. ua(p,s) is the (eight-component) spinor for the nucleon.
The normalization of the nucleon and other fields is given in Appendix
A. 1In deleting the specification (in) from the ket IZA”7it has been as-

sumed that the target nucleus is in its ground state.
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Further reducing the amplitude we obtain

T (e >7be) = -ifd"x éag'x (Dxdrm,?;)

" KRBl R0 T 2My Uip,s) .3)

with ¢b(x) the pion field and R the causal commutator. For physical

. 2
pions (q~ =

mi) the pion field in the amplitude above may be re-
20
placed by the divergence of the axial-vector current according to

(1.4)

b b
22 - I g

-R IV 2

with f1T the pion-axial-vector coupling constant and b the isopin.

This leads us to define the quantity

b = ‘g
F Q)= -~ %Jd‘*x eL8 x(U".{-m;)

» {Noud) \?(b’ut;(x) ]‘m\\Z“) wip,s) (1.5a)

which assumes the value of the pion-production amplitude for physical
14
the

values of q, and in analogy to the work of Fubini and Furlan

quantities:
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b . . XD
My (g)= ‘g fd%e (O KR IR(AR (0T )12 Utes)  (1.62)

b ‘o
R (= {-Z; fd‘i} e“g x(a,ﬂn,’;) {Brout)) [A:(X)Jj—[n)] J(x) "ZA)ULp,s) (1.6b)

*

These three quantities satisfy the generalized Ward's identity
b b M, b
Fo ) = R+ ¢ M. () (1.7)

for all values of q.
It is valuable to study the three quantities above in the
frame in which the spatial components of q vanish. 1In this frame

Fb(q), Mb(q), and Rb(q) become

b . |
Figy= —% (=g Sd"x e g'x"(?—cmﬂlE ( %p;’mjm)lz% ute,s? (1.8a)
h N X Ya
My (g = t% N o R0 T[> hts, (1.8b)
b
A - One-g) [ <ol [0, Juo) S 272 e (1-8¢)
™

Equation (1.7) permits the evaluation of Fb(qo) when q_ = 0.

Explicitly,

b . b Lim b
F ) = R°(0) + 2w .M, (8) (1.9)
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We note immediately that RP(O) has the value

) % g f”’ b fiat | [0, Tea] S| uters) (1.10)

"

The equal-time commutator is usually taken to be

b _ — _ b _(9)
[A 0,76} S0 = (2MTF©>+] @Z S qay

apart from Schwinger terms, which do not contribute to RP(O). This

commutation relation, which follows immediately from the c-model21 s

22-2
has been studied by a number of authors 4 e In particular,
2
Banerjee and Levinson > , who have shown that its validity is some-
what more general than that of the o-model, have been able using it

2
to derive the pion-nucleon scattering lengths of Weinberg-

Inserting equation (1.11) into equation (1.10) we obtain

2 - _ A b
RE(O) = ~'{-2'5' m, <-Pcau1‘)] ZM‘P(o)-L-J(o)\Z )“a.’s_-';— uip,s)
T
Vi - A -P.aM b
= -\_’fs mEfahl J( 12> # :\jm ?;% Wepsd (1.12)
r [

The contribution to Fb(O) from the second term in equation (31,7)

is more complicated. Inserting a complete set of states in equation

(1.8b) We have
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b 2
Mo (Za) = (27'-)3‘!%’ (m%"?.) Z & <-F (out) A!:(o)\rb(n\ j(o)\ Zn)ule,s)

{, n>
05 51
L 2O el uesieiRol™ § G (1.13)
ReEB#1 )

(Y S A

b . .
Only those terms in the braces contribute to F (0) for which the denomi-

nator vanishes as qo_a»(), i.e., only if Pho = Pgo in the first line and

P in the second line.

no ~ Pao
In the second line of equation (1.13) only the ground state of
the target can contribute among the intermediate states, Explicitly,

its contribution is

I \
3&/_;»1 Mgy = “% ot Jol EM g (@S 1 2> .14
g0 7 ‘

where the vinculum in equation (1.14) denotes a connected matrix element.
Z' is determined by the charge of the meson; the other prime in the
intermediate state denotes a different spin quantum number from ZA
which we understand to be summed. We postpone discussion of the
selection rules arising from the axial-vector matrix element in
equation (1.14). We note, however, that <(Z'A)|,A:(0)IZA) is an axial
vector and, therefore, must be proportional to the spin 4-vector of the
target. Hence the right member of equation (1.14) vanishes trivially

if the target has spin zero. We will, in any case, always argue that

its value is usually small compared to the contribution from Rb(O),
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if A is large.

The number of terms contributing to the first line of
equation (3,13) will be very large in general since f may be a
very complicated collection of particles. In addition, the number
of permissable final states increases exponentially with increasing
A. Writing \ f(out)> explicitly as I flfz’ . 'fn' .e (out)> , where
fn is a particular particle in the final state (nucleon, nucleus,
meson, etc.) the contribution of the first line of equation (1.13)

becomes

. ,I ‘
é!:% 2 Mf(ga = ?"%—‘;’-‘}'&\Akm\@b

() o Pt 12 P U (1.15)

where the sum is restricted to final nucleons and nuclei only since
diagonal matrix elements of AE(O) vanish between pion states. Again

the primes refer to possible spin degrees of freedom, which are

always understood to be summed implicitly; as before, Pen = Py

We write the complete expression for Fb(O) as

Foo = 'M {(Q-goml‘]‘ml 2y B-FM YSEL'Z' ulp, )
"11 &”PA'JW ?‘

+¢ bt TN @M ) wiem K™ A2 122D
* ; ORI ALSIR D 8,y [7V2R% wips \k (1.16)
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Diagramatically, we depict the divers comntributions to
equation (1.16) in figure 2.

Equation (1.16) gives the value of Fb(O), the physical
amplitude being Fb(m“). The difference between these two quantities,
which must be calculated in some fashion different from the above,
is needed in order to predict the pion-production amplitude. It is
well to ask to what extent Fb(O) approximates Fb(m“). The adequacy
of this approximation in a much different regime has been the central
theme of the soft-pion theorists 8 and for interactions invo}ving

|
only elementary particles this assumption seems justified as evﬁdenced
in part by the validity (with 10%) of the famous Goldberger—Tre&man
relation., For processes involving composite particles (or more?
accurately stated, for processes in which there are anomalous
thresholds present the assumption of the very slow extrapolation
of F(m“) to F(0) is no longer tenable. The difficulty is already
present to a small degree in the reaction NN » ¢f 17 .

A completély relativistic formulation for processes involving
composite particles does not at present exist, at least not within
a practical calculational framework.27 For the moment we post-
pone discussion of the contributions from composite particles until
a later chapter‘when we will have constructed a non-relativistic
theory.of pion production. For the moment, we will simply exclude such

terms from Fb(O) without justification.

Still another unpleasantness is that the contributions from
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Jim 'H*’(g)

g;—w‘zo e0e
contain diagonal matrix elements of the axial-vector current while
that of RP(O) does not. At the same time the internal nucleon in
the diagram depicting Rb(O) is not on the mass shell while the
internal particles in the other diagrams are on the mass shell.
The treatment is thus un-symmetrical. It has been shown, in the
detailed study of thz reaction NN - NNn27 that this lack of
symmetry is small and the contribution from RP(O) may be recast into
a form which is identical to the other contributions. For reactions
in which the target and projectile are not identical there is no
obvious advantage in doing this and the present form is in fact
more convenient.

It is instructive to examine the structure of the pion pro-
duction cross—section as given by the contribution RP(O) alone. We
shall see in succeeding chépters that this is the dominant contribution
to the croés-section. For simplicity we study only the production of
neutral pions. In this approximation the production amplitude becomes

; o 2 _ A M. 0
WL i+ —-‘Jf_ m, <ladl J 2> ﬁ%\", rg-uCP.s)
4 AN

2 APy T

Ly



where now q will denote exclusively the physical pion-momentum
(q = (mﬂ, 0, 0, 0)) and we have used energy-momentum conservation

in writing Pe =Py =P~ 4. Rationalizing equation (1,17) gives

, o z - P-g+M
Moty = —% iy L f ot Jal ZA>2F§_1”;;_-,Z’ % -E wes)  (1.1s)
Using the algebraic identity

1
- +™M
E._Z.—-a- :p-ng .._._-- [“’“”"),g,__{] (1.18%)
2931z 2p:¢ 2p.8-i;
and noting that the contribution from the second term is of order

m"2/2M2 (= .01) compared to that of the first we write

Ttk 2 ~Fg bt T2 BRALE Luen )
<G

The differential production cross—section when only the final

plon is observed is

dqoﬁ'° #)p2 2 -——l“'
;—g—q— ‘.‘.’ 8 (g ) [ a 2?;;] [\_f.‘f-\-’.p.‘

i Gt S (P+g-£-2)| Wit (1.20)
IS

where $P and vk are the velocities of the projectile and target, res-
pectively, and 5(+)(q2 - mz) = 6(q2 - mz)e(qo). I1f we average over

the projectile spin we find that

22
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é
= Da T P4 A
= Ez(‘?(ﬁ&ﬂ“@\z%ﬁg ;%MZZ-—PT';—?(Z U“)“?(‘:‘“"» (1.21)
Using now the algebraic identity

Sw————

P g PM p Part (PR -MEME P

22 7 2 292 (r)? Zm : (1.22)
we obtain the useful result %
£ 31 Mty vl
|
= ;éf (Pé);‘:%} ';;f z \W(LP.S)ZA—‘»N\Z (1.23)
where
Wicto,nnt) = ety Tl IZMutp,s) .20

is, except that f may contain other pions, a purely "nuclear"
amplitude. Thus, averaging equation (1.20) over the projectile

spin we have
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°

4
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8 2£F  (p9)? Gms L% 26

.t 4cl® o
A %;mﬁ O (+f-§-R) <"Jﬂlw9\|> (1.25)

where the brackets denote spin averaging. Note that although the
entire derivation has proceded in the rest frame of the pion,
equation (1.25) is manifestly Lorentz-invariant.

The factor

(PgY: - M2}
(P5)?

is the square of the relative velocity of the pion and the projectile,
which is just the projectile velocity in the pion's rest frame. If
we examine the other contributions to F'(0) we see that these are
also linear in the velocity of the particle for which the axial-
vector-current insertion has been made. Thus at threshold, certainly,
R°(0) makes the dominant contribution to F°(0).

To evaluate equation (1,25) we define a '"non-relativistic"

interaction U according to

G2 U1) = e SUER) Qb JolZhues) .26
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where round brackets denote non-relativistic matrix elements.
Because the matrix element of the right member of equation (1.26) is
Lorentz-invariant, U does not transform as a scalar under Galilean
transformations but rather in some very complicated fashion to insure
that the non-relativistic amplitude as calculated from the Schrodinger
equation is Lorentz-invariant. This means that if U is known in one
frame, say the laboratory frame, than it is not known in other frames.
Note that the pion must always be treated as a relativistic particle,
i.e. q 2. |E|2 = m 2. Substituting equation (1.26) into equation
o T (1.

(1.25) we have suppressing the spin averaging

a5 (gt md (P MIE )
dg* (2my? 29: T (PR VeVl

. %:) (20 8 tp -\ (1) (031 MY

or, more compactly,

gglr‘* = _______fi’ _’?7_12 I_\.’A\z !
AL 20 2LF P (G,

L _
%;("“)43 42?-&&-3—@)\ (F\U 14) ‘z. (1.28)
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where we have performed the integration over the magnitude of the

> . . .
pion 3~momentum, |q| , to eliminate the §-function in the pion

phase-space factor. The momentum conserving 6&-function in equation

(1.28) may be integrated immediately to give

% ° l*‘A ”74 - 1 i
o0 =~_‘8___ ___’1(.:"_.|V'P“|______._

»¥ 24 VoV

m

(2 S (EprErmE NECUUN D (129

|

|]), denote a relative matrix,

a ga Bﬂs 2(9.77

119

where the double brackets, ( l,

element. The energies in the remaining 8-function are total (ile.
Using the identity

c.m. plus relative) energies.
i

) .
= -”% ~ LwS(x) b @.30)

»®
T
J’

where P means principal value we may use closure to sum over the final

states in equation (1,29 and obtain

g™ = __;_f__f:_l_ m:f \‘\7 12\
(D 2a AL Wl

-2 Jm (U _—- Uii) (1.31)

E‘g'f%‘mt]- H “* '1

where H is the total Hamiltonian operator. Since U is hermitian

by explicit construction we may rewrite equation (3,31) as
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where

P i - i
Tiey= U+ Umqu (1.33)

is the transition operator. In the center-of-mass frame equation

(1.32) becomes

[

D (Gl T (poi-g. 5L lIE)

(1.34)
where the energies appearing in equation (1.34) are now relative
" energies, ]EIZ/Z(A+1)M is the difference in the initial and final

c.m. energies of the '"mon-pionic'" systems.

Equation (7 34) contains the forward scattering amplitude
. 2
(TG -5, - 2L y)2)
E;*E% s ZlAHR“)

which can be calculated knowing only the nuclear optical potential.

We define the single-particle transition operator :ke) according

to

Yy = (PN Tl &)

(1.35)

27
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A,
where Qo is the ground state of the target. :J(e) then operates on
a single variable, which in coordinate space is just the relative
coordinate of the projectile and target centers of mass.

The optical potential, Uopt(e) is then defined according to

3 €)= _U;p'} (e—)'*'U_O(:HQB D(e) (1.36)

e\<+q
with K the relative kinetic energy operator of the target—projectile

system. Inverting equation (1.36) to give

- !
Uoptey = Jto>- Jey s v e (1.37)

shows explicitly that the optical potential is a function only of
the energy appearing in :)(e). Letting riyopt denote the single~
particle plane-wave function in the projectile-target relative

coordinate, equation (3, 34) becomes

¥gT _ 18 w1

3§28~ [za)d 2f° 1784 S’mrw,((il Jepltdet 1.0

L

where

2
Ep=5p+E -Co ztlAS-inM (1.39)

s are functions of

Note that.:) in equation (3,63g) and hence also UOpt

the final energy of the non-~pionlcsystem only and not of the initial
energy. Thus, the pion-production cross-section for the most
energetic Pions allowed is determined solely by phenomenological

potentials appropriate to very low energy nuclear processes.



\ 29

The only dependence on the angle of the pion is contained in
the factor \.\7",\2 . This arises because we have included only the
contribution RP(O) to fo(O) and summed over all final momenta of
the nuclear system. The angular integration is thus easily performed

to give

————— g

\
Bf"o ( )1- L.n I-ﬁ‘tm‘;; +ML"{I‘L+ M"m;' \Gp—\-}nl

20" _ VEL md  elbaeME v
2

I (21 (EDIA) (1.40)

and the total cross-section is given by

g

il 25 20l (1.41)
" 284
where qomax is the solution of

Ep (") = o. (1.42)

The treatment of the production amplitude becomes less manage-
able if we include the contributions from other terms to FO(O). Since
these correspond to axial-vector-current insertions in out-going lines

we will call them '

'post-emission'’ terms. The contribution from RO(O)
and the term containing the axial-vector-current insertion in the
in-coming target line we will call "pre-emission." Explicitly from

equations (7,16) and (1.19) we write the production amplitude as
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o 2 —
Ftoy= "‘C’.EJI {(Q(M)Uloﬂ 2‘)%5)’;’5,; Uueps)

+§ (" RIN IS Lot T Z S UlpiS) S (1.43)

where again the sum is restricted to out—going nucleons.

If we write
P+M = ZMZ UpsH) ey (1.44)

and define the nucleon-axial-vector coupling constant 8y according

to

b Ay = T b
<¥u\l\}} &> “(PL’S")%A'V,.%;—I‘“(@,SJ)

2 (1.45)

then we may recast equation (j,43) in the form

2
Fay= -V2m { ouhl Tl 2*>duipshy (@ ’
o 2% g Feohl Jiat2 >uq>.s)(u1?.s‘)a;rsg (M?,s))

K
+ZE (0,5 75 £ 9, YKt Tl P50
v QM Qols T M V' -'."(°“'MJ(“3'27 (P:S\}

(1.46)

where we have used the fact that we are in the pion rest frame in
rewriting the contribution from RO(O) in equation (1.46) .

The various contributions to equation (1,46) are identical in
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form but for the lack of a factor 8y = 1.18 in the first line.
Thus, as pointed out earlier, the current—-algebraic prescription
for evaluating the amplitude is not symmetric, although the
descrepancy is small owing to the very small renormalization of
the nucleon -axial-vector coupling constant, When there is
need of nuclear democracy we will arbitrarily insert a factor

gy in the contribution from RO(O).

The presence of the post-emission terms in equation ( 1.46)
prevents us from using closure since these terms depend explicitly
on the momenta of the final-state particles. These. terms are
always small near threshold because the particles in the final
state have much smaller velocities than those in the initial
state. We will see in the following chapter that the contributions

from "post-emission' will still be quite small compared to those

from the terms already discussed even far from threshold.
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CHAPTER II

Nucleon-Nucleus Collisions IT

" In the preceeding chapter we studied the contributions to the pion-
production cross-section from Fb(O); specifically, we studied only the pre-
emission term. In this chapter we study the dispersive corrections in
going from the ‘soft' - pion limit (q2 = 0) to the physical~pion limit
(q2 = mﬂg). The contribution from both pre- and post—-emission terms will be
included. A discussion of the contribution from composite particles will
be postponed until the following chapter.

The inciusion of those higher-order contributions which vanished in
the‘soft—pion limit is best made within the framework of non-relativistic
quantum mechanics. To do this we identify a relativistic dispersion re-
lation for Fb(ko) with its non-relativistic cpunterpart, actually just the
Lippmann-Schwinger equation,and identify "non—relativisticﬁ potentials
which describe the production of pions and other processes. Ihe problem
of going on and off the pion mass shell is then accomplished non-relativis-
tically.

To write a dispersion relation for the production amplitude, Fb(ko) we

recast Equation (1.5a) in the following form by bringing the D'Alembertian

operators into the matrix element.
F(Ry= € [oldetre Pouh IR (Y2 vy Jeor )1 20> wip,s)
+€ Jd4 LF our) | LD 00, Jeo) S| Z*> ULPIS)
3o Jd4x ety | [DP0, J] S0 | D L®S) 2,1
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where we have written
'Db(x): -_‘_\';i EA:OO (.2.23)
£, d%m
* b
Do = D (2.2b)
BXQ
b .
Jrtd = (B+mE)D ) (2.2¢)

In the o@-model or any lagrangian model not containing pion-nucleon
gradient couplings the third line of Equation (2.1) vanishes. This also
follows from the strong version 11 +f p.c.A.C. (partially-conserved axial-
vector current), which identifies Db(x) of Equation (Z.Za) with the ca-

17

nonical pion field. However, it has been shown that the vanishing of

j D%, o] § (o) d*

follows from the equal-time commutation relation postulated in Equation
(1.11) and the added hypothesis of a conserved vector current (C.V.C.).
Thus, the vanishing of the third term of Equation (2.1) requires no new
dynamical assumption.

Inserting a complete set of states in the first line of Equation (2.1)

we have in analogy to Equation (1.13)

Filro =Y. {4{«’;}] ﬁ(&jn} 4\ Jio\ 2 S uiem ?_@)
> (Rk-Ryghiy

U%*R-Gbgﬁﬂ

+4 Jaf Chiouwhy| (5000, 3103] St 2% U,

(2.3)
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We note that the last line of Equation (2.3), which cannot be evaluated
directly, has the value Fb(OO), as can be seen easily by taking the limit
of both sides of the erjuation.

The two terms in the sum comprise contributions f;om the right- and
left—hand cuts, respectively, as well as poles in the complex qo—plane.
The lowest order contributions from the right-hand cut arise from elastic
projectile-target intermediate states followed by states involving excited
states of the target and at still higher energies intermediate states in
which a meson has been created. The left-hand cut has as its lowest con-
tributions terms involving the production of pions by the target leaving
it in an excited state. We will again arbitrarily exclude such terms from
the amplitude.

Equation (2.3) can be cast into a non-relativistic form as follows:

We define first non-relativistic potentials U and V according to

(%3, 1 U1 ¥ae, )

_ 3c(3) 2 o -
= (V8 (Ban. 3,9, <B R (o) JOIRIWERS)  (2.42)
=) (£%)
Lw"aﬁ; ‘db\’ \ \p‘P,'?-:-)

- %) l’-“ L T PN
= (2778 (R R B-Pa) SRR (o] L@lpred 2.

where qb is a destruction operator for the pion, %p P, is a two-nucleon
1

+

plane-vave state and YJ(—) is an eigenstate of the total hamiltonian
P1P)

tending to ¥ as t»+09 ., We are careful to define the potentials in

PPy

terms of two nucleon states since the definition is otherwise ambiguous.
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For example, the nucleon current, 3(0), has non-vanishing matrix elements
between the nucleon state and the two-nucleon-one-pion state. We assume
that we can extend the definitions of the potential to larger numbers of

nucleons in the usual way:
- -h N - N
Ve, %) = ‘%U (%% ) (2.5)

Otherwise, a different potential would have to be defined for each 'muclear"
intermediate state. (Notice especially that U is not the potential defined

in Equation 2.26). We therefore write Equation (2.3) as

Flry= Fooy + 2 (4 1otV 1) GP‘*’IU1 K 3 s ()
E‘F 'i'Ro"EM""'

(2.6)
remembering that the simple identification of the potentials U and V is
meaningful only;if the intermediate states assymptotically contain no pions.

Performing the sum over the center-of-mass momentum, Equation (2.6)

becomes

Flro= Fue +Z (G Mot D) (BN L)

Ep+k—E oty (2.7)

where the double bracket again denotes a relative matrix element and Ef
and En have here been redefined to be relative energies.

Denoting the total relative hamiltonian by -
H= K+ UaV (2.8)

with K the relative kinetic energy we have

b o
Folra) = Foo) + (%"l!deMUIIZ;) (2.9)
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The physical pion production amplitude is given non-relativistically

36

by

Fomany = W0 G 1+

- .M? (2.10)

with Ei = Ef + Mg .

immediately that

Comparing Equations (2.9) and (2.10) it follows

Foroo) = (4 1V %;)

. (2.11)
and ;
- =
Pl = (Gl (1+ E'-m -kl i) (2.12)
Notice that the only dependence on ko is in the operator,
Ty
1 + Eg-kg—K-:U't"? (2.13)

Thus if we are able to determine the potential V from the soft-pion limit,

ko = 0, the physical amplitude could then be evaluated by means of this

potential,

To determine the potential for pion-production we neglect rescattering
of the pion and study that part of Equation (2.12) in which V acts only
once | which relativistically amounts to considering the contributions from
only the lowest energy intermediate states in Equation (2.3). This assumes
tacitly that corresponding terms in the respective cxpansions of Equations

(2.3) and (2.12) can be identified. Rigorously, of course, the identifi-

cation in unambiguous only for these lowest order contributions.
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In this approximation Equation (2.12) becomes
b 2
F (ke = (43*‘ ol [, V] 2,7 (5 + R L) (2.14)
with
L, B 5
| ¥ = Q, CEp Xp (2.15)
and
(€5 I
Q= 1+ g ¥ | - (2.16)
}
is the Médller operator for the hamiltonian . ;
Ho= K= U | (2.17)
We may rewrite Equation(2.14) as '
|
Pk = T (4N 06)] Q261 7n)
-1
- (W <ElEy Qg+ E) (2.18)

The first factor, which is independent of ko’ we recognise as the
soft-pion limit for the processrl-awa. The entire dependence on ko is
now contained in the second factor, a sort of "boosting" factor. For k
= (0, this factor has the simple form Siﬁf This factor also exhibits a
simple form at ko = My, though not at intermediate energies. Explicitly
this is

: ~
(',{y.“&lfn(EF) WEMT) = (Al Qf,”(sp W)

{
= (W ==

(B0 $ )
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_:w,, ) (2.19)

whkich is just a matrix element of the free propagator. Thus Equation (2.18)

= =My (ZM" bf’

becomes

Foom)= -y L F @ (x..n — 1"

(2.20)

To further study Equation (2.20) we note that non-relativistically

+ -
— LIy ' ov
u-(?)s ){o(su(-f',s) "%#g (r) ‘.g:'\;!“ C#a(?) ‘ (2.21)
with ds' and ¢g Pauli spinors. We see then that F (0) as glven by
!

Equation (1.46) becomes non-relativistically 9

Flot@ = ~Eriga [ a6 (g, T
i eT E i
|

= +
- (Xglli‘ (rM g (q)Ulllu)} (2.22)

where the prime on the summation denotes that we have included only the

axial~vector couplings to nucleons but not to composite nuclei in keeping

with our relativistic approximation.

Substituting Equation (2.22) into Equation (2.20) we obtain

T Vo)
r 2 E}-kwfﬂ

- —. -n:..rc N7
(Xcll%l P_““NT"U;,.VJ EReM ceF Ua-_-l:\\q‘ )13 (2.23)
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. . b .
For convenience, defining W according to

u—

——rm . -
W LU Z Wq:j-vd B{ (2.24)

b
and noting that W commutes with K, the first term in Equation (2.23)

becomes

N 'U‘E w"u ¢

=l@p li-gh | we i) ;)

= (STwhg ) GIWIE®) - (@.29)

Likewise, the second term in Equation (2.23) becomes

G o
-(Z;l\WSL’LE‘c) [few 1\1 ")
+ g
Now S]thgé)lj' is just —T-LE4J , the transition operator, which
(-] .
satisfies the integral equation
ta cd- 1
TE = Ur Tig Eg.me 2.26)
and also
Thgy A = U
- 1 2.27
E‘;—K—tf“j E&,‘\C-'U—-t-") ¢ )

so that this term becomes
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-Gl w'ur I &)

Eg-k-‘U'ﬁ 1
= 7 G IW U7

= (W= Uliep)

(I w {le@) -}
T W™y — (Lehwil L) (2.28)

'

The first term in Equation (2.28) cancels a like term in Equation (2.25).

The second term vanishes trivially leaving us with
Plia)= (¢) ~ 2T -t 5% TF 10,9
w ¢ ——&g T ™ J d 2 1 (2.29)
’ w

We have recovered the DWBA approximation (Distorted-Wave Born Approximation)
of non-relativistic scattering theory. Thus, from Equation (2.29), the

potential describing pion production is simply
—— 3 [ Qe r"L +
VMZ &;lhq;- J%‘ o, + h.c. (2.30)

Non-relativistically this potential is generalized to include inter-
actions with composite particles by extending the summation to all nucleons
wheter or not they are the constituents of composite nuclei.

In the present work we will not consider more than the DWBA term.
Corrections to Equation (2.29) have been studied in detail in a previous

17
paper for the reaction NN-OTE,
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Let us examine what we called the post- and pre-emission terms in

the production amplitude. ©Noting that E1 = Ef + m,, we write

b
Flma = o (4P (550 V2 11 #)

= g, (N (TR 2 (2.31)
Ve = oo V] (2.32)

Since K commutes with Vbby explicit construction this becomes
= = (N TUVE Ve (B ) 9)
T I te LY S
- G0 LUV )

¥

tl

(2.33)

Note that had we chosen to neglect the distortion of the initial state

because of its much higher kinetic energy, there would have been no post-

emission term because

(Ee-RXg) =0

(2.34)
and the amplitude would have become simply
b - -
F (M)= —Y;"- @lv VeI (2.35)
T

Were we to insert a complete set of states in Equation (2.35) and note
again that K and V commute we would obtain the non-relativistic limit of
Equation (1.19) above. Thus the pre~emission terms differ in the soft-

and hard-pion limits only in the distortion of the initial state. Also,
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the post~emission terms are still expected to be smaller than the pre-

emission terms since we expect final-state interactions to be more important

than initial state interactions.

As before we may write the pion-production cross—section as

blcmb = & S S (e, -
63!’ 5—“—5 Z(zm3 |VP"V‘; T £ B M)

HAPN TV VN 62

(2.36)

~ 1§
) zt!-sn)’ Ve .-v Vo (I U]

E. L ~Wy Hu"' '7

Lo, villi ‘f?,;m) (2.37)

where we have used closure in going from Equation (2.36) to Equation (2.37).
Although the nuclear matrix element has been written in closed form, it can
no longer be replaced by an equivalent optical amplitude because of the
presence of the post-emission terms. Néglecting these but still writing

the initial wave as being distorted, Equation (2.37) becones

b"cr" - =3 t

S55%" 2o AT 3““”‘*""’"”5 e V)

(2.38)
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(= 2
If the Hilbert vector Vbll‘b,{' 3 has a well-defined energy, i.e., if
it is approximately an eigenstate of H, we can then write Equation (2.38)

as

PSa i — 1 [ ,
263% = lany? [T, 9 vt (671VE T (g maVH )

(2.39)

with U(e) the optical transition operator.
Equation(2.39) again has been derived in the pion rest frame. If we

transform the equation to the center-of-mass frame, the cross-section is

qu*'ﬂ'b - -—\;g_l .——\-_ g‘w &n b 2 w :
Spos; 2 i I (Ve -, -2% V1),

(2.40)
where now
< ERXL
V: Z -ﬁn’” ‘ J-‘u—‘ -‘-:> Eb +
1 _E&JZ e > (L%Y) z)_%ol,o +heeo (2.41)

and where ?cj is the individual nucleon coordinate.
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The potential for pion production defined above is not manifestly
galilean invariant. This lack of galilean invariance is associated
with the description through potentials of any inelastic process and
is not a disease of the problem of pion production alone. However,
from the practical standpoint the discrepancy is more serious since
the inelasticity amounts to at least 140 MeV.

It is not clear how serious the lack of galilean invariance is
since the non-relativistic description of the nuclear interaction
demands that we work in a frame for which the nucleon velocities are
small compared to the speed-of light. This greatly restricts the
velocities of galilean transformations which we are gllowed. A more

complete discussion of this problem is given in Appendix C.
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CHAPTER III

NUCLEUS-NUCLEUS COLLISIONS

. We consider in this chapter from a purely non-~relativistic stand-

point the reaction
A B b

In the preceding chapter we constructed the potential which describes

the production of a pion of momentum q by a system of N nucleons as
Ve BT Erda oo dt
ET R cagaic e oo

In applying this potential to the production of pions by composite par-
ticles we are employing necessarily an impulse approximation. The cur-
rent algebra, in fact, has not been used to construct the potential for
the production of a pion for any baryon but the nucleon. In writing
the production potential for a composite nucleus as a sum of individual
nucleon potentials for pion production wé are guilty of the same naivity
with which we construct the nucleon-nucleus interaction as a similar sum
of individual nucleon-nucleon interactions. This approach, however, has
had the practical advantage that it is the only one by which processes
involving composite particles have been understood.

Concentrating our attention on the prcduction of neutral pions only,
for which there are fewer complications due to isospin conservation, we
write the transition operator for pion production considering the pre-

emission term alone--this is equivalent to neglecting initial state dis-
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tortion--as

o 1 - o .
—r::_',# =~ (§: \U vie"1%e) (3.3)
Here X4 is the initial undistorted state of the projectile and target
and ¢f(_) is an exact scattering state of the nuclear hamiltonian

Ho =R+ U (3.4)

for the final system. U is the full nuclear interaction; its identifica-
tion with the optical potential for the projectile-target system can be
made only after all matrix elements have been reduced to elastic-scat-

tering amplitudes.

" We define the following quantities:

A (B) is the nucleon number of the projectile (target).

->

-
x, (rB) is the coordinate of the center of mass of the

projectile (target).

>
rn denotes an individual nucleon coordinate.

+ rel > - > > . ., .
T =r -1 (=r -1r_ ) 1is the relative coordinate
n n A n B
for a projectile (target) nucleon.

> > - . . . . .

T =1, - I, is the projectile-target relative coordinate
> - >

R = (ArA + BrB)/(A + B) is the coordinate of the center of

mass of the entire nuclear system.

A
> >
VA = z Vn is the gradient operator with respect to the
n=1
center-of-mass coordinate of the projectile.
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3£rel = $n - GA/A is the gradient operator with respect
to a relative coordinate of the projectile.
iéﬁ—l) ( ri(g L ) denotes the internal coordinates of

the projectile (target).

Assuming that only the projectile emits the pion--this is, we hope,
a reasonable approximation for A << B--equation (3.3) becomes

‘

. R a e
Ty = (@Ue™ [ 32 Y (-5 - 1)

WG me 114 L (3.5)

where

v el

Do, 300 ~ZpiE f N SACR :

SUE v ) = 7 i e = q, " (3.6a)
1)

v = el - :
- n = _J‘z‘m,%ai e_"'g""‘ = (A (3.7a)
W (f ba m= K q:( R ) i,

We may insert a complete set of states in equation (3,5) to obtain
[ 5
. - (—’ -‘g..rﬂ a 3““‘
Tiap = -X (87 UL Z) (ol S18y 24

- ("
("m’ f)-a-WC@;\"L“)]m (3.8)

+3(A-1)
rel

3(A ))

Noting that neither 3 (3; ro nor W° (q; ) dependson Ror T
but only on the internal coordinatesSof the projectile, equation (3.8)

reduces to

T° = _%: (§!‘(\-\| e-dé'-\'"[\vw”\ (‘Pu‘ '.un-n“

t>f
3(23 3(A) (__.-E').;.W (-5) ’u )l(P(’SlA-lS

(3.9)
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where we have taken

3AB) _ BR BT yan "~
I = e e g ) BUE ) (3.10a)
a (BR BT A1 3(3"3 :
(3 Ny = €% e tp“(r,d ) S, (Cou (3.10b)

but the sum in equation (3.9) is necessarily restricted to states which
differ from the initial state only in the internal quantum numbers of

. > > . >
the projectile. Pi (PN) is the total center-of+mass momentum and Py

o
(pN) is the relative momentum of the initial and intermediate states,

: 3(A-1) 3(3-1) .
respectively. q)o( Yool ) and }go( roo1 ) are internal wave func
tions for the projectile and target ground states, respectively. Simi-
3(A-1) 3(B-1)

larly, (PNI( r_o1 ) and g“Nz( t_ o1 ) are internal wave functions
for excited states of the projectile and target.

The second factor in equation (3.9) becomes
.‘b - ﬁ 5 o
Swe (5 (G- ) + Wae (D

where
S{AJ) 3(&4)

Sw ()= de* CPN(?:MS(‘Z’ (3.11a)

e s (A0 3ta- 3um
Wyalg)= Jdm'" CP (i Wiy '7‘{’.( (3.11b)

I1f we wish to identify SP() and CPN with shell-model wave functions,

CPEM' and QPEM , which depend spuriously on A coordinates, equations

(3.11) become
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Sh= & 0% Sl gZo SR O
o ° TA-1) MM ®A L
W) =+ Sg“,. Gu PV PN E R)  (3.12m)
' Writing '{A = R + (B/(A+B))T and

BABY (v Ci?‘ﬁs R
(PR gy 2 o (‘.3m+‘»41“§;>)

(3.13)
equation (3.9) becomes
) -~ . x ""._1}_ -
T‘(\.__‘Q - (2“)38 (’.P‘:P;‘ )%'(@;\!"eb MBU"L) r:’:cg) (3.14)
where
(-] -~ - S ° :
e (D) = SulD - (%“%—;)4- Wys (3.15)

The quantities appearing in equation (3.14) have a simple interpre-
tation. The nuclear'matrii elément is simply the nuclear final-state
interaction following pre-emission of the pion for which the vertex
function is F;o(a)' The factor exp(—iEJ%(B/(A+B))) expresses the recoil
of thr relative system after the pion is emitted.

The contributions to the vertex are of two kinds. The first term
in equation (3.15) is very much like the vertex encountered in the case
of nucleon-nucleus collisions in the preceding chapter. Since the scale
of this term is determined by the total momentum of the projectile, we
will find it convenient to denote it as the "external emission" term.

The second contribution to FNO(E) vanishes if the projectile is a

single nucleon and thus describes a phenomenon not encountered in the

-
case of nucleon-nucleus collisions. The gradient operators in W;O(q)



act only on the internal wave function of the projectile. Thus the
scale of W (q) is set by the internal (Fermi) momentum of the pro-
jectile. For this reason it is convenient to denote the contribution
from this term as "internal emission;"

From equation (3,14) the production cross section is

g (N
ag asza T Atamy Iv,-v“t %_)- E‘ ol® AN

. l(@f’“ecmf"*v WMz S (B5-2)  (3.16)

Summing over all final states and using closure in the usual way this

becomes
ot o _fl .
) (zmy? ’Vp-VI z | m‘-S“
\
Jum\w ——— U %)
Et=§y ;f:ﬂh Havi

= ML SOV RGATENL)  can

(Zm° Vg WaVg) 1™

with T(E), the nuclear transition operator, again given by

TE)= U+ U-E-Hn.'ﬂ"lv (3.18)
and
1312
Ep= E‘MEu‘Za"‘i%}gM (3.19)

It is tempting at his point to identify T(Ef) with an optical
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transition operator :kEf) as was done in previous chapters. Rigorously,

this is possible only for the term N = 0, i.e., the ground state of

the projectile, since only for stable particles (whether elementary or
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composite) can assymptotic states be defined. If the excited state of
the projectile has a narrow width compared with a typical energy level
spacing, then it may still be meaningful to speak of the projectile
as being scattered in the usual way. Thus, we expect the optical
description of equation (3.18) to be most reasonable for light projec-
tiles (He3, d, t) for which the spacing of excited states is large
(though these states are unbound) than for heavy nuclei for which the

level spacing is exceedingly small.

Simultaneously, a phenomenological optical potential describing
the elastic scattering of a composite projectile in an excited state
is unknown since the cross section for such a process is not readily
available to experiment. One might argue equally well that the op-
tical potential is eilther the samé for the excited state as for the
ground state of the projectile or that it is much "weaker."

The first premise rests on the validity of the impulse approxi-
mation for calculating the optical potential. Since most of the
nuclear material will be concentrated within the same volume for
both the ground and excited states of a nucleus, expectation values
of the nuclear interaction will not differ greatly in these two cases.
The optical potential in this approximation would then be largely
independent of the projectile state and the off-shell transition ma-~
trix elements appearing in equation (3.17) would all be equal.

The second premise argues, perhaps less naively, that for an
excited nucleus some nucleons will be very weakly bound or even
unbound and their wave functions very extended spatially. Since
absorption from the elastic channel in the projectile-target scat-

tering procedes largely through the excitation of these particles,
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Qe would expect that the optical potential would reflect mostly the
shape of the wave function of these most highly excited nucleons.
With this attitude the optical potential would be very shallow and
very wide.

Let us examine the contributions to equation (3.17) for a =0,
for which the two approximations discussed above are identical, owing
to the existence of selection rules. We note that §°(0) and WO(O)
are symmetric operators with opposite parity. The external and in-
ternal emission amplitudes then do not interfere. (We shall assume
that this is the general case even for non-vanishing al) Since §o<0)

i
operates only on the spin coordinates of the nucleus, it can connect

i

|
the ground state of the projectile only to a member of the same multi-

|
plet. Assuming that the target is an even—even nucleus so that the
transition operator is rotationally invariant the cross-section for
external emission becomes near a = 0, |
g T ? ) =0 D, T\12
235 )& L R (- LN
Of. 08, (2Y (G-l Wa

ext
;) (3.20)

~dw (3 1) Ty

where the brackets denote spin averaging. This expressionlis clearly
vanishingly small if the projectile has spin zero,.e.g., an alpha-
particle. For a spin-(1/2) projectile go(o) is determined by the
spin and isospin of the odd nucleon. Thus for the projectile, say,

a triton or He3 the pion-production cross-section averaged over spins

becomes
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81.0_30 o l g l |
P e =Jo . . mv 9‘
®8o M"t)’-"* (2™ 10, -vg! 7,(;‘;

dwe (LN TN,

lvﬁn‘

(3.21)
wvhere we have set
-tn — -
VTA = 'PA & g
K;i" I;; 3.21)

the relative pion-projectile velocity. Equation (3.20) is identical
in form to equation (1.38) derived earlier.

Because WO(O) is odd under parity, only states of the projectile
with the same total angular momentum but opposite parity contribute
to the cross-section for internal emission for small pion momentum.

The cross-section for internal emission of the pion is then

s

3803%)‘“‘ ..l l 3_<(W (| )%(YN\H‘L&)IIVA (3.22)

(4.n\‘ lV -Un!

with the sum restricted to states satisfying the aforementioned snlec-
tion rules. This expression is insensitive to the details of the
internal structure of the projectile if we assume that the summation

is exhausted by a single collective state,x . We may then write

(W (a)]® = [ (@MWl %\
=z (W Q@MW)

(@l [Weel™ 1) (3.23)

N

Explicitly, equation (3.23) is
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‘-\ s

‘W:e““zd M"%'“ (?UZTLO' ¢ %)% 77+ ‘Y..L) I 2) ©.24)

If we ignore correlations in the wave function so that only the terms

1 = j contribute we have

Iweaca | *= via (cm? ©:70%| ¢

lul& (_3.25)
Now
o
: b. Lg%:cb, b Lol -g° &°
6 0;°= 2O Gt eotge] - 200000, o) ]
. a- N
= Sab'f' ‘bGach’i , (3.26)
|
where a,b = 1,2,3. Performing the spin averaging in equation (3:26)
only the Kronecker-6 survives and we have then that '
] 2 4- A
Weop = midl(q) s V‘\ca) |
Mfyr 1 |
4ta ™~ ___
= !DL&E liut
MQ;' (3.27)
where Tint is the internal kinetic energy of the projectile ground state
which is related to the Fermi energy EF according to
Ty = 2
’m* = SAEF (3.28)

The cross-section for internal emission for very small pion momentum is

then
_bz_g_w_o e lfl ' il e Tiwt ;lm(z TENN
bg,bnz) (2m® 1V, MAy 2 h‘_’ ) (3.29)
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and the plon-production cross-section for both processes for very small

pion momentum becomes

2eT L ot [ (G I (GITENT)

—

Biobﬂa (ZTY® V-Vl
' + ZI‘:;\H }m, (X,_\\T(Ep\ il XCY] (3.30)

The two contributions are illustrated in figure 3.

At threshold

Wr V> = 2Text /AM (3.31)

where we have written Text for the kinetic energy of the projectile.
The ratio of the production cross-section for internal and external

emission (assuming that the latter does not vanish) is then

T AT f
T ed - T Texk O /30 3(3.32)

For a triton or He3 this number is about .3. As A increases the}
ratio of internal to eéternal emission becomes very large but at
the same time the description becomes less and less valid. We

have assumed, of course, in constructing the ratio: that the off-

shell transition matrix elements are equal, which is not obvious.

It is less clear how the cross section is calculated for 3
large. If we assume that only the lowest energy states of the pro-
jectile contribute then we may trivially extend equation (3.30) by
including form factors of the projectile as

e "“ ‘ £ 3-1 A 17 1
Fo™ _ gl _t i ga (PO [Vl
‘——_—-"———3 - ™ —‘p.‘i-— ﬂ A'
£, 2%3 (2rP Vel 28

I (K TORN) ¢l SO I AT (3.5
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where P°(§) and GLC;) are hadronic density functions of the projectile

in the ground and collective statesyrespectively,and
“ 3. L3%
e(g)= f 3 P (3.34)

On the other hand, if we assume that all the important off-mass—

shell transition matrix elements (i.,e., those for which §;o(3) or

0

WN0 (;) is appreciable) are equal we may then perform closure on the

projectile states, namely

CI@ISHIRY 1™ = (B3l [N

(3.35)

= L@t ) = TR G

T

and

@RI =t e [

= LG WOFIR) = misz G.36)
25 M

[

where the brackets denote spin averaging and we have neglected con-
tributions from correlations in the ground state wave function in both
equations so that

A -n.O = -—n

__?__Q;_ — (gl .—l-- ""'n?‘h [}V ]21' 2 Tiid

5 1%, * AT ™

6o o325 (zas -Vl % M

(2’/ TE) IY) (3.37)

In this case the approximation gives us an identical expression as



at threshold. For 3 >> %?,where R is a characteristic radius of
the projectile’the two results, equations (3.33) and (3.37),differ
considerably.

This completes our discussion of nucleus~nucleus collisions.
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CHAPTER IV

Numerical Results

In the present chapter we present results obtained by evaluating
directly the expressions derived earlier in the text. We limit our
discussion to those experiments in which only the final picn is observed.
What is more, we assume, owing to the smaller distortion of the incoming
nuclear system compared to that of the outgoing nuclear system, that we
can ignore post emission diagrams. In this approximation we saw that
the pion~production cross—-section is related directly to the transition
matrix element for forward scattering fully off the .energy shell by an
amount equal essentially to the pion energy. When we approximated the
initial state by a plane wave, the approximation consistent with our
neglecting post-emission diagrams this relation became a simple linear
dependence (equation (1.34) ). The evaluation of the production cross-
section then amounts to evaluating this off-energy-shell forward
scattering ampliéude.

In the case of pion-production in nucleon—-nucleuns collisions our
attention was fixed on the reaction

p + Clz—-b n° 4+ 7
because of the a§ai1ability of data (at least for the total pion-
production cross-section) and also because the phenomological optical
potential describing elastic p--C12 scattering is thought to be well

known. For the sake of simplicity the optical potential was taken to be

an energy—-dependent spherical square-well of radius

R = r0A1/3 4.1)
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with r = I.2 fm and A the mass-number of the target. For C12 this
radius is Z.8fm. The well depth has been determined from experiments
performed by numerous authors. For zero energy we took the wellvdepth to
be' 52, MeV + 1i#5, MeV as determined by extrapolating data presented by

2
Bohr and Mottelson 8. The value at 150 MeV was taken to be

20. MeV +-i£15. MeV from the same source. At 1 BeV there were the
29:.

experiments of Palevsky et al ° who give the value 20. MeV + i%*100.

MeV . but a slightly smaller radius, which we did not take into con-

sideration. For an intermediate energy we took the experimental cross-
sections at 424 MeV of Hering-ﬁ!'0 , for which the best fit of a square
well gave the well depth of 20. MeV + i*5, MeV. The well depths at

ofher energies were determined from these by linear interpolation. These
well depths as 'a funcﬁion of the energy are depicted in figure 4.

The values of the well depths at 0,150, and 1000 MeV, which we have
taken directly from the literature, were determined from optical model
analyses using the Woods-Saxon well. Thus a calculation of the elastic
scattering cross-section with our square well with these depths would
naturally exceed the experimental values to which the well parameters
wvere supposedly fitted. We expect the off-shell amplitudes to be less
sensitive to the diffuseness, however so it is not unlikely that even
with a sguare well the Woods-Saxon well depths are more suitable for
calculating off~shell-amplitudes than those determined directly
from square well fits to elastic scattering cross-section. We shall
see in the case of pion-production in nucleus-nucleus collisions, how-
ever, that the ch&ice of a square well can lead to the gross exageration

of certain peculiarities of the production cross-section.
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Figure 5 shows the calculated total pion production cross-section

for the reaction

p+0'°‘-—»1r°+¥

plotted together with the measurements of Dunaitsev and Prokoshkin.
In the calculated curve the following approximations have been made:

1) we have neglected completely all final state interactions of
the pion, and

2) we have only considered emission of the pion by the projectile.

The first approximation is perhaps not too serious. We note that
for low enargies the pions produced will be largely p-wave as indicated
by the form of the non-relativistic effective potential for pion pro-

duction.

VY- Emig, & (-ims F-3)Twf whe.

I ._ip; ( 1)

The p-wave pion may then have important final state interactions with the
nuclear system through the (3,3) resonance. We note with Mandelstam

that since the pion-nucleo= interaction is shorter range than the nucleon-
nucleon interaction and the pion is generally moving faster than any
other particle we expect that the pion final-state interaction will be
largely accomplished before the nuclear final-state interaction sets in.
The main effect, then, of the pion final-state interaction is to
renormalize the pion vertex. The validity of the'optical theorem will,
therefore, not be impaired. Also, if the work of Mandelstam is a good
indication, although the pion final-state interaction will modify the

pion energy distribution substantially, the normalization of the total
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production cross section should be unchanged.

The second approximation is far more difficult to justify, especially
in the light of the discussion of the last chapter. Very close to thres-
hold, say, within 30 MeV, the production will be predominantly s~wave
for which the repulsive final-state interaction will greatly reduce the
vertex for large nuclei. At higher energies when mostly higher angular
momentum pions are produced there is no reason to expect that the pro-
duction by the target will be very small. In fact, the discrepancy with
experiment at high energies may be just this.

Figure 6 shows the energy-differentiated cross—section calculated
from equation (1.40). The distribution of pions is dominated largeiy
by the available phase.space. The resonance at 275.7 MeV corres-
ponds to a 4.3 MeV single particle level in the optical well. Since the
optical potential is nearly real for the largest possible pion energies
the resonance stands out markedly from the rest of the spectrum., For the
low energy end of the spectrum the nuclear optical potential is sufficiently
absorptive that no structure will be diécernable. Properly, there are also
small spikes in the pion spectrum for pion energies greater than qzax given
by equation (1.42) correspounding to capture of the proton into a bound state
of the (A+l)-particle system following emission of the pion. These pro-~
cesses.are not calculable from the optical amplitude since the final nuclear
system is in a discrete state,which must be included separately in the sum
over states qppearing in equation (1.29). This comment does not apply to
the quasi-bound continuum states of the final nuclear system which appear

as resonances in the optical amplitude like the 4.3 MeV level above.
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Figure 7 shows the angular distribution of pions for an }ncident

energy of 280 MeV, which is given essentially by the factor

Vg I® = C(PE)—MME
?-80%

(4.2)

folded over the phasé-space (though it has been calculated dynamically

here). This factor may be rewritten as

7
\\-’;1‘_‘1.:' {- M .3)
with
TR |
4 (4.4a)
& i
Ve = —E— _ ' (4.4b)

the pion and proton velocities, respectively. The backward peéking
will be more pronounced for higher incident energies since vp will
be closer to unity. At threshold, assuming A>>1, vp has thelvalue
0.14 so that close to threshold the distribution of pions is nearly
isotropic.

The problem of calculating the pion-production cross-éection for
nucleus-nucleus collisions is more difficult than for nucleon-nucleus
collisions because we are hampered by our far more uncertain knowledge
of the effective nucleus-nucleus interaction.

It is by now accepted that the scattering of low energy tritons,
He3, and alpha-particles by a nucleus can be described by an optical

well whose parameters are
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Ve 2 A VRNT (4.5a)
AT NT
Vz ¥ Ng (4.5b)

where A is the nucleon number of the projectile, VNT is the optical
potential of the nucleon-target system, and R énd I denote real and
imaginary parts, respectively. The argument for choosing these
values is that A nucleon are inter;cting with target. Since the
nuclear force is supposedly not saturated for A £ 4, the real part
of the well should be that factor deeper. But since the projectile
is usually more tightly bound than the target the effective nu?ber
of absorptive channels is not much different than for a nucleo% pro-

i
jectile. Thus the imaginary part should be largely independent of

the projectile mass number. These arguments cannot hold for the

1
|

heavier projectiles because of the saturation of the nuclear force,
. P )
nor should it hold for deuteron because of its small binding energy.

Not surprisingly, this simple prescription fails in these cases.

-

Simultaneously, it
must be pointed out that these potentials are not unique. One can
as well describe the scattering of alpha-particles by heavy nuclei
with an optical potential the parameters of which are not much different
33

than those for the scattering of nucleonsy~ This fact is unsupported

by recent attempts to calculate the optical potential for composite pro-
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jectiles from phenomenological. nucleon—~nucleon potentials within the
framework of the impulse approximation?a

Figure 8 gives the pion production cross-section for protons, He3,
and alpha-particles on Cu65. The radius of the p—Cu65 optical well
was taken from equation (4.1) and the well depths were assumed to be
given universally by those in figure 4. The well depths for the hea-
vier projectiles were determined according to the prescription given
in equation (4.5).

The unusually large cross-section for alpha-particle projectiles
(the total reaction cross-section is only 1500 mb) was not totally
unexpected and for the most part reflects the choice of well parameters.,
The large cross—section is a direct result of the possibly unrealistic
final state interaction of the nuclear system.

To achieve a better understanding of the cause of these large

cross—-sections let us decompose the nuclear final-state interaction

into its partial-wave amplitudes according to the well known expansion.
(P ATty =
Fue (7, | PIP;) = ar T ey Fml ool T, (5 0 (4.6)
For simplicity, taking the optical potential to be real, we have

G LR T EN g ) X l(ti;)(Q,r)lUl.icp,-n)I" 4.7)

and since U is a-square well this is proportional to

R
| §,dr* 4”00 0ol

R
2 - ) z
= 1A, tepl ”ﬁ"!ﬂtwlj}(ﬂ-ﬁ\ (4.8)
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where Al(pf) is the amplitude of the regular solution inside the
well and R is the momentum of the final nucleon measured from
the well bottom. The various momenta. are depicted in figure 8.
There are two sources of resonances in the calculation. One,
clearly, is the amplitude Al(pf> whose resonances correspond to
guasi-bound continuum states in the well. The other resonances

are in the factor
fi
dl" r" I =)
5 Jltaﬂ Jl(ﬁ.p)

and these occur when &= p; « Writing

kN |
X . % L vem, |
2o - Zm (4.9)

we see that a resonance will occur when the potential well depth

just compensates the pion energy. We call these latter resonances
frequency resonances. We note that unlike the amplitude resonances,
whose height is very sensitive to the nature of the boundary condition
at the well radius, the frequency resonance is rather insensitive to
details of the optical well so long as:it is largely flat. At the
same time we note that the frequency resonances are very wide (on

the order of a pion mass) while amplitude resonances are much narrower
(for a complex well the half-width is only twice the imaginary well
depth). Thus it is the frequency resonance which is responsible for
the overall normalization of the production cross-section for alpha-
Cu65 collisions while the amplitude resonances contribute to the

prominent peak. Thus for a more diffuse well, like a Woods-Saxon

well, we would expect to see the same cross-section away from the
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peak but the height of the peak would be much smaller.

As an example of this we have calculated the total pion production

cross section for the reaction

P
— 7w° 4 2’

13

6
oA + Qu
using the potential

Uopt (E) = WRIE) 4 LNV LB (4.10)

with the well radius, VR’ and VI given above and A varying from 1.0 to
4.0, which is roughly the variation of the phenomenological well depths.,
The results are plotted in Figure 10. i

|
The magnitude of the amplitude resonance should not be seriously

considered since a square well will always exaggerate these. For from
this peak, however, we notice a wide variation in the production cross

section (an order of magnitude near 275 MeV).

We note that all these calculations have been done in the "closure"

approximation, in which there appear no form factors for the projectile.
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CHAPTER V
Conclusions

~ We have seen how Current Algebra and dispersion relations have been
used to calculate the cross-section for the production of physical pions in
nucleon-nucleus and nucleus-nucleus collisions. In the case of nucleon-
nucleus collisions the soft-pion limit gave a simple expression for the
spin averaged cross-section in terms of off-shell amplitudes for purely
nuclear processes. When closure was used to sum over all possible final
nuclear states the optical theorem gave an expression for £he production
cross-section in terms of a single off-shell amplitude for forward elastic
scattering which could be calculated from the nuclear optical potential.
In going from the soft to the hard-pion amplitude we saw that the chief
correction was the distortion of the incoming plane wave. This we expected
to be only a small correction.

In calculating the corrections to the soft-pion limit we were forced
by the complexity of the nuclear interaction to recast the problem within
the framework of non-relativistic potential theory. In this process we not
only recovered the distorted wave Born approximation for the physical am-
plitude but also determined the effective potential for pion~production
given by cdurrent algebra. This we applied to calculating the pion-produc-
tion cross-section in nucleus-nucleus collisions.

For the reaction

P+ C'z——v 7"%?

we saw that our theory, which depended on no free parameters, described

the production cross—-section fairly accurately. For pion-production in
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nucleus-nucleus collisions, however, the results were very uncertain owing
to our very poor knowledge of the nucleus-nucleus optical potential. Thus,
there is certainly great hope that a study of pion-production in the col-
lisions of nuclei will do much to remove this uncertainty. It is not
impossible that our description of the off-shell nuclear transition ampli-
tude using a local potential may fail altogether. Until there are some
experiments in this area, however, no statement from us on this subject

can be considered appropriate.



69

APPENDIX A

* CONVENTIONS

Our conventions differ from those of Bjorken and Drelll9 only
in the normalization of states and fields,

If A and B are two Lorentz vectors, we adopt a metric such that
sy -—n
A-B = AB_-A-B (A.1)
Relativistic single-particle states are normalized so that

|
<P\r3l l P 33-» = (271)3% Sa‘(?l ~¥-) SS.S;

for fermions and ;
L&l 2.y = (am Qg’og (6%) | (A.2b)
for bosons. The summation over states in these two cases is

> = [ d%% My - zMSd_.E PO o

1p=S (2‘!‘)3\7
for fermions and
I A gd"g I
%) —- x(—z;-ﬁ 25, - 6277\ g Cﬁ -m* (A.3b)
for bosons with
'SM(P%.M'-) = S(pin’) € (R) (A.4)
The closure sum is then
4 = %) Ipay <psl (A.5a)

for fermions and

4 = %'\ﬁ><8| (A.5b)
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for bosons with the summation being given by equations (A.4a) and (A.4b),

respectively.

The scalar field is normalized so that

demlg) = e:tf’.x (A.6)

The components of the charged scalar field are defined in terms of the

L 3
three hermitian fields (f) (Pl, @~ according to

@° = tps (A.7a)
¢t = "J‘i(q’l £4g") @)
The Dirac field is normalized so that i
< Yo (g7 = ;.CP.&L&S) | * (A.8)

‘

Thus,. for example, the reduction of the S-matrix according to the

!
LSZ-formalism proceeds as follows:

Ly ouh | O Ged> = Pheeath) Ot 3-8 (S

(A.9)
-1 Sd"’xe" g-x(m_ ) et R (1 0od) lpu‘u)>
for outgoing scalar particles and
Hoh| O@\pped = <o~ Wsted| 0w fuo)
(A.10)

~4 [dtecuad i R o) BED (LZ-1)EF ucps)

for incoming Dirac particles where R denotes the causal commutator,

RIMBi) = (AL Dup] e -y

(A.11)



Non-relativistically, we choose the normalization
)
(RIP) = (2nV& (F-T)

so that the sume over states becomes

zzgdﬁ%

=) (2my’

and the closure sum

1 = = el

132
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(A.12)

(A.13)

(A.14)
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APPENDIX B

THE AXTAL-VECTOR CURRENT

We present in this appendix some conventions regarding the axial-
vector current and a derivation of the equal-time commutation relations
used in the text.

The pion-axial vector coupling constant, fTr » is defined according to
| é-) + AF
el ) ) Th) = o
| M:,' Z/* . (B.1)

The left member
of equation (B.1) is determined from the lifetime of the charged pion.
Experimentally, f,’r has the value0.96m3_ Thus, we have for the neutral

pion, making the necessary rotation in isospin space,

o] (] - 'tTr
(O\A,,Lﬂ\?”éb - Z/a (8.2)

The hermitian components of the pion field and the axial-vector

current then satisfy the relation
¢ N — -Cf o L‘K) 7
(o[a/,[x}‘(mrw = o Lo\ ol ) (8.3)

where i=1,2,3. From this it follows within the framework of the LSZ~

35 as long as the pion is on the mass shell,that matrix

formalism ,
elements of the pion field may then be replaced by identical matrix

elements of the axial-vector current according to the prescription

¢ . A .
>l 00 = %_%(Pm c=1,2,3 (B.4)
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For the charge components this becomes

)

a. : a
N %; @ (x) a= oyl (B.5)
with
(o4
Q,, = ?,,. (B.6a)
+
£,, ""m—j}?f (B.6b)

the different values of the coupling constant resulting from the difference

in the definitions of the charge components of the pion field and the axial-
vector current,

o i

A-)x Xy = A?, &) (B:7a)

+ 4 <A :

A/‘,«(’O: % (A}, A IXVMB (B.7b)
i

(see also equations(A.7) in the preceding appendix).

The non-strangeness—changing charges, Q‘ and Q; , are defined in terms

of the vector and axial-vector currents, ve (x) and A (x), as

L el
QG = Jo3 V:(xo,x) (B.8a)
Q;(xg = SA‘;Z A, (%e,X) (B.8b)

with £=1,2,3, the index of the hermitian components.

The time derivatives
of these charges are

C.chxo = S\dS; é/u\//u‘(x)

, .(B.9a)
&Lty = (g b= [ak D

(B.9b)
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One usually assumes the conservation of the vector current (C.V.C.)
* L. -
so that QL is time-independent. One assumes also that Q (xo) and Q;

satisfy an SU(2) ® SU(2) algebra, namely
. § '
t QL(_XQE.,Q (Xe\_} = 4 G"J'ka()(.\ (B.10a)
¢ J . L
[Q (-KQ ) QS (XQ—] = L&.‘Jk QS (XO) (B.10b)
[Q; <) Q;_ (XD] = LGk Qk( %)

This algebra may be enlarged to include the nucleon field by intro-

ducing thc equal-time commutation relation

[Q“ o, Pool = \\'3(@_'77{.‘ ‘ (B.11a)
¢ — _ £t
[Qs 0, P} = -Pra s 7 (B.11b)

[ S
and similarly forY(y). Operating on equations (B.11) with (-i*M) yields

L - — T
@', 0] = Tt z (B.12a)

[Q; Gy, 360 ) = (j(x)+2.M Po) Y- ?cf:‘

+4 _(o\'?’)? [?t( Koy, Yoo | Yo (B.12b)

We may rewrite equation (B.12b) using equation (B.9b) as

<

f@é(xo,jm]: (I(x)+ IMPDYe %
A —
+ 1 [Q¢ (X0, Y)Y, 51207
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Crucial to the commutation relation given in equation (1.11) and the dis-

persion relation, equation (2.3),was

[Q (xy, Fw) =0 (B.13)

L
Namely, that D (x> obeys the same canonical comutation relation with the
nucleon field as does the pion field., We will show that this vanishes
from the current-algebra hypothesis and C.V.C.

From the Jacobi identity

EA»[K)C]] -+ EB, [C;/ﬂ] -+ EC, EA;B]]:O (B.13%)

it follows that

[[Qb 0, Q2 (Xo)] Joo] [Qs & [@ &9 _)(,5)7 ~ (Cemj) (B.18)

The left member of equation (B.1l4) is 51mply
(e [Q D, T )= <EijuTe0 &
fyke Q" (% 0 4 = Tk J& Fa (B.15)

The right member becomes using equation (B.11b)

[QX), (3 cmzmwwg—n [Q 0P 1Yo ~ (£))

= U (70"" N "!' t [Q (7(0)) W(X)}K:Y;

+L [Qg (o), [(Q5 (%, Pos]] %o~ (6<% (8.17)

Now

) ck
’)’(x)l- ‘ - ()= ¢ ;Jk3(x>—§~ (B.18)
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so that equation (B.1l4) becomes
X — J ; . —_
L @5 00, Tl T + [Q4 00, 18800 Tro] V- (ceny= © (B.19)

~The second term in equation (B.19) becomes after employing the Jacobi

identity

- [ Q5 [ Q00 WedIT ¥ + L& txa, ], et

- A J. (1 r"‘t: ; s ) - ..
=- L@ (xux,Wbo]b’JS% +[ [Q}'(X«),C\)SJ 0], ¥ )% —(ee>3)  (8.20)

so that equation (B.19) is

— J S iAa- -
2 [0, ool = + L[QE005 W ¥t thed =0 g 5y

The second term is equation (B.21), however, is

[o%'l [Q;( Xs), ng ), Yoo ) ¥o
= ¢ Ejk [, B %,

= O (B.22)

Thus

EQ;O@, CPOOJ =0 (B.23)

and the theorem is proven.
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APPENDIX C

THE PRODUCTION POTENTIAL

| The pion~production potential definéd in equation (2.41) is not
galilean invariant owing to the appearance of a factor exp(ig;%? in every
term. Our purpose in the appendiﬁ is to present a prescription by which
the expression for the production-potential is approximately galilean
invariant. We admit ab initio that a galilean invariant expression which
is valid both in the center~of-mass frame and pion rest frame cannot be
constructed for any but the lowest energy pions. The pion must always
be freated relativistically; the nuclear constituenté of the reaction,
because of their much larger masses than the pion, we assume can be
treated in a non-relativistic fashion,

As before, we denote by Pi and Pf the total 4-momenta of the initial

system and final gystem (excluding the pion). Thus,
—-\—- ;3 e
g = |¥-P¢ ' (c.1)

e
Now P —Pi is a Lorentz covariant but P --P:.L interpreted non-rela-

£ £
tivistically, is not a galilean invariant because the initial and final
systems may have different "masses'" owing to other inelastic processes

accompanying the production. Writing these masses as

S% = ‘f%ifiz -(C.2a)
St

i

\/f\}ﬂ (C.2b)
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we may write the Lorentz—invariant quantity (Pf - Pi)2 to second order
in the 3-momenta as

('P-o-z-—' Se-S;)* [ Y
$ 1.) (f t) —Sigt[‘g%"%)-*“' (c.3)

The first two terms are clearly galilean invariant if we reinter-
pret ?f and 3; as non-relativistic observables. Higher order terms are
0((|?l/8)4) and therefore quite small if the nuclear systems are non-rela-
tivistic.

If the excitations of the final nuclear system are small compared

to Si we may write equation (C.3) as

(PF~PI-_)1$ (S;“Sj)t —(f%‘;]s_‘.)?' :

For pion production

(C.4)

i 2N “«
('?-'Pr) = My (C:.5a)

— 2
(R-pY = VTl (C.5b)

so that equation (C.4) becomes

-
mi = (3p-Sed 150 c.o

The pion-momentum in equation (C.G) is surely a Lorentz-invariant
and therefore to order ((I%I/S)a) a galilean invariant as well. Using
this as our value of l;l in the exponent immediately renders the poten-
tial galilean invariant. We note that equation (C.6) is equivalent to

gc?‘ IS‘F—S.Z:I ©.7)
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which says that the pion energy is just the difference of the "masses"
of the initial and final system. We note that the difference between

this value of 9 and the value which q, assumes in either the center-

offmass, laboratory, or Breit frame is very small. For convenience,

we have always used the center-of~mass value.
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Figure 1:

Figure 2:

Figure 3

Figure 4

Figure 5:

Figure 6

Figure 7:

Figure 8:

Figure 9

Figure 10:

FIGURE CAPTIONS

Kinematic variables for the reaction p + Clz-# T° + 7,

Contributions to the soft=«pion limit.

Composite emission diagrams.

The optical potential,

Total pion-production cross-sections for the reaction

p + 012__~_ﬂ& + ?. The incident energy is given in

the center-of-mass system. |
|
l

Energy differential cross-section for the reaction

p+ C12——47w° + ?. All quantities are given in the

I
center-of-mass system. ;
|
Angular differential cross-section for the reaction

p+ Clz-—9'T° + 7. A1l quantities are given in the

center-of-mass system.,

Total pion-production cross-section for several pro-

jectiles on Cu65: proton (solid line (x 10)), He3

(dotted and dashed line), and alpha (dashed line).

Distorted and undistorted wave functions in the optical

well.

Total pion-production cross-sections for the reaction
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alpha + Cu6§J,1t° + ? for several choices of the optical

well.
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Figure 10
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