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To generalize is to be an idiot.

William Blake (1757–1827)

People who like quotations love meaningless generalizations.

Graham Greene (1904–1991)
A Burnt-Out Case (1960)

Abstract

The Generalized Wahba Problem, which can accept as input both measured directions and
measured attitudes, is defined and examined in terms of both the attitude profile matrix B
and the Davenport matrix K. The possibility of extending the generalization to scalar mea-
surements is also examined. We obtain a number of new results relating these two matrices
to the attitude estimate and to the attitude-error covariance matrix. We compare the gener-
alized Wahba problem also with a less restrictive approach to attitude estimation.

Introduction: The Wahba Problem

The Generalized Wahba Problem is an extension of the original Wahba problem
[1] which extends the inputs to include not only direction measurements but also
measurements of whole attitudes. Its advantage over the original Wahba problem is
that it permits the inclusion of an initial condition as well as star-camera attitude
estimates as inputs.
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The Wahba problem, first proposed by Grace Wahba in 1965 [1], seeks the
proper orthogonal matrix (attitude matrix, direction-cosine matrix) A which mini-
mizes the cost function2

(1)

where is a set of N measured directions observed in the space-
craft body frame, the corresponding reference directions, and 

a set of positive weights. 
Several solutions [3] were offered almost immediately for solving this problem,

none of which was really suitable at the time for practical spacecraft mission sup-
port. However, they all shared one common property, which has persisted also in
the fast solutions: they took advantage of the fact that Wahba’s cost function could
be written as

(2)

where

and (3ab)

and tr denotes the trace operation. This writer generally refers to B as the attitude
profile matrix. The great power of the Wahba problem arises from the fact that the
gain function is linear in the attitude matrix A. 

The next significant development of the Wahba problem was made more than a
decade later by Paul Davenport,3 who showed that as a function of the quaternion
the gain function could be written as4

(4)

where K is the symmetric matrix

(5)

with

(6ab)

(6c)

The optimal quaternion estimate, Davenport showed, was the characteristic
vector of with the largest characteristic value. Thus,5K�

q̄*�,
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2 and and all other vectors in this work are column vectors and not (abstract) physical vectors and, there-
fore, following the conventions of reference [2], are denoted by bold unslanted sans-serif characters. 
3Unpublished by Davenport but presented in references [3] and [4].
4To be more rigorous one should write and and similarly for and 
below, but the reader should have no problem interpreting our expressions.  Likewise, we have been some-
what casual about distinguishing random variables from their sampled values, when a result is true for both.
We have not written etc., in equations (4) and (5) because the equations hold true both for the ran-
dom variables and the sampled values. We have written equations (1) through (6) in terms of random vector
measurements and related quantities to avoid a multitude of subscripts or superscripts.
5The quantity in equation (7) is the sampled value of a random variable variable, i.e., the value for
the sampled values of the measurements, and is the true value of i.e., the value for the true value of�max,�o,

�max,�max�

B�,K�,g�,

J���J�q̄�,J�A�,gq̄�q̄� � gA�A�q̄��,gA�A�

V̂kŴk



(7)

Davenport computed using Householder’s method [5]. In this manner,
Davenport’s q-method was used to support the HEAO missions [6]. Davenport’s
q-method is the immediate ancestor of the QUEST algorithm [3, 4], of Mortari’s
many ESOQ algorithms [3, 7, 8], and a new unchristened algorithm of Bruccoleri,
Lee, and Mortari in terms of the modified Rodrigues parameters [9]. Markley’s
SVD algorithm [3, 10] and FOAM algorithm [3, 11], on the other hand, are direct
descendants of the Wahba problem.

To obtain a prescription for the weights, appearing in equa-
tions (1) and (3), the QUEST measurement model [4] was proposed, namely,

(8)

where the the measurement noise vectors, were assumed to be
mutually independent, zero-mean, and (approximately) Gaussian with covari-
ance matrix

(9a)

(9b)

Equation (9b) assumes that the reference vectors can be taken to
be error-free, i.e., nonrandom. The assumption that are zero-
mean and Gaussian can only be approximate [12]. The assumption that these quan-
tities have circles of error rather than ellipses is an enormous convenience but also
cannot be exact.6

Thus, the observed directions were assumed to have circles of error in the planes
tangent to the observations. It could now be shown that would achieve its
smallest value if the were chosen as7

(10)

where 

(11)

Generally, one chooses or �o � 1�� tot
2 .�o � 1

1

� tot
2 � 	N

k�1
 

1

� k
2

k � 1, 2, . . . , Nak � �o�tot
2 ��k

2 ,

ak

J��q̄�

k � 1, . . . , N,�Ŵk,
k � 1, . . . , N,V̂k,

Ŵk
true � AtrueV̂k

E ��Ŵk �Ŵk
T � � k

2�I3�3 � Ŵk
trueŴk

true T� � RŴk

k � 1, . . . , N,�Ŵk,

k � 1, . . . , NŴk � AV̂k � �Ŵk ,

k � 1, . . . , N,ak,

q̄*�

K�q̄*� � �max� q̄*�
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the measurements (hence, The random is the characteristic value in the random equation
We prefer to retain the notation  for the random variable, because the random K-matrix

bears no related mark. We will observe this nice distinction in the sequel. Our brief discussion of the Wahba
problem and Davenport’s q-method, equations (1) through (6) above, always used rather than the gen-
eral notation for the sampled value of a random direction measurement. This is alright, because the equations
for the attitude estimator are homologous mutatis mutandus to the equations for the attitude estimate. See the
glossary in Appendix A for a summary of the statistical notation in this paper.
6An examination of more complex models for the error distribution has been carried out recently [13] and
showed as much as a 30 percent improvement in attitude estimation accuracy (standard deviation) for attitude
sensors with large fields of view. The computational burden of this improvement over that of the QUEST
measurement model, however, is high.
7 is a function not only of the random variable but also of the random measurements. Thus, in mis-
sion support, when we evaluate J at the attitude estimate, we must write since we will use sampled
values of the measurements as well. Likewise, when the true values of the attitude and the measurements are
used, we write (which vanishes, obviously). and are all useful expressions.
The term estimate applies correctly only to the sampled value The random variable is the estimator.
A, and without any marks simply denote free variables.�q̄,

q̄*q̄*�.
J��q̄ true�J��q̄*��,J��q̄ �,J true�q̄ true �

J��q̄*��,
q̄*J�q̄* �

Ŵk�,Ŵk

�maxKq̄* � �max q̄*.
�max�true � �o�.



Based on the QUEST measurement model and the weights given by equation (10),
the inverse attitude estimate-error covariance matrix corresponding to the QUEST
attitude estimate (or to any solution to the Wahba problem) was shown to be [4] 

(12)

where denotes the attitude increment vector [2], a small rotation vector measured
most generally in attitude estimation from predicted body axis. When the attitude
increment vector is measured from the true body axes, it is denoted in this work by

Note that the inverse covariance matrix of equation (12) may not be invertible.
Thus, the covariance matrix itself may not exist.

Another innovation of consequence for the present work is the TASTE test.
TASTE is a random variable defined to be8

(13)

It is easy to demonstrate [14] that TASTE is a variable with degrees
of freedom

(14)

if the data is correctly modeled by equations (8) and (9). Under this condition
TASTE will have a mean of and a variance If this is not the
case, due, for example, to misidentification of stars, errors in the star catalogue,
light interference in a Sun sensor or star tracker, or some other fault of a sensor,
then TASTE will take on values very far from the expected mean, generally by
enormous multiples of the confidence bound, and indicate the lack of validity of the
data. In this manner, the TASTE test has been very valuable for data validation in
mission support, beginning with the Magsat mission [15]. As we shall see below,
some operations can disable the TASTE test.

Perhaps, the most significant innovation in the study of the Wahba problem
with relevance to the present work was the demonstration [12] that the maximum-
likelihood estimate of the attitude given the QUEST measurement model was, in fact,
the Wahba problem with the weights defined according to equations (10) and (11).
Rather than just being an heuristically motivated attitude problem, the Wahba prob-
lem now entered the mainstream of Estimation Theory. One immediate consequence
of this was that asymptotically (i.e., as the inverse attitude-error covariance
matrix became the Fisher information matrix [16], which could be calculated much
more easily than the attitude-error covariance matrix in reference [4]. Thus,

(15)

which has immediate consequences for this work. For optimal attitude estimation,
this result has led to the possibility of recasting the Wahba problem both as a
Kalman filter and as a Rauch-Tung-Striebel smoother [17].

The Generalized Wahba Problem

The Wahba problem [1] estimates the attitude from direction measurements alone
assuming effectively that these have random measurement errors described by the

P�̃�̃
�1 � F�̃�̃ � E�	2J��̃�

	�̃	�̃ T�

�̃�0

N l 
�

2�2N � 3�.2N � 3

TASTE � � 2�2N � 3�

2N � 3� 2

TASTE � 2J�A*���o� tot
2 � 2��o � �max���o� tot

2

�̃.

�

P�̃�̃
�1 � 	N

k�1
 

1

� k
2 �I3�3 � Ŵk

trueŴk
true T�
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8TASTE so defined is independent of the value chosen for �o.



QUEST measurement model, equations (8) and (9). We can extend the Wahba prob-
lem to use whole attitude measurements and their respective attitude error covari-
ance matrices as well. We call this extension the Generalized Wahba Problem.9

The Generalized Attitude Profile Matrix

Consider equation (15) above. We may write

(16)

where

(17)

with

(18)

is the direction-cosine matrix for a very small rotation [2].
At the true value of the measurements, equations (2) and (3) lead to

(19)

Carrying out the partial differentiations of equation (15) leads directly to

(20)

since is symmetric, because is the orthogonal matrix of the polar de-
composition of [18], and similarly for D and 

In general, we have no choice but to evaluate at the sampled values of the
measurements and the estimated value of the attitude. In practice, what we usually
call the attitude-error covariance matrix is, in fact, equation (20) evaluated at the
sampled values of the measurements, that is,

(21)

with (for all three statistical possibilities)10

and (22abc)Dtrue � Btrue Atrue
TD� � B�A*�TD � BA* T ,

�P�̃�̃� ��1 � �tr D��I3�3 � D�

P�̃�̃
�1

D�.Btrue

AtrueTDtrue

 � �tr Dtrue�I3�3 � Dtrue
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�1 � �tr Dtrue�I3�3 �

1

2
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T �

 � �o � tr �Dtrue
T �A��̃��

 � �o � tr �AtrueBtrue
T �A��̃��
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T �A��̃�Atrue�

�A���
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2

3

0

�1
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1
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 � I3�3 � ���̃�� � �1�2� ���̃�� 2 � . . .
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�̃
�


�̃
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A � �A��̃�Atrue
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9The generalized Wahba problem first appeared without being so named in reference [12], where it was ap-
plied to the inclusion of an initial condition in the Wahba cost function. The exploration of the generalized
Wahba problem in this work is far more extensive.
10When an equation can be written entirely in terms of random variables (assumed to be the true values plus
zero-mean random error), then obviously it holds separately for true values and sampled values as well. A
glossary of statistical variable types can be found in Appendix A.



We may solve equations (20) and (21) for and write, in general,11

and (23abc)

with, recalling equation (12),

(24a)

(24b)

(24c)

The matrix D will appear often in this work and deserves a name. Since it is
closely related to the attitude information matrix, we call D the attitude co-
information matrix.

Thus, we may include the estimate of the star-tracker quaternion and attitude-
error covariance matrix of the previous section in the Wahba problem by including
in the (cumulative) attitude profile matrix of the spacecraft a term which is12

(25)

where denotes the star-tracker attitude matrix computed from star-tracker data
alone, and is the corresponding covariance matrix computed from the star-
tracker data.

of equation (25), alone (if there is more than a single star observation) or in
conjunction with the attitude profile matrix from other attitude measurements con-
forming to the QUESTmeasurement model, is sufficient to determine the spacecraft
attitude estimate and associated attitude-error covariance matrix. However, to cal-
culate the attitude estimate efficiently using the QUEST algorithm or other fast al-
gorithms deriving from Davenport’s q-method, we also need to know the
contribution of the star-tracker measurements to or to an equally good approxi-
mation of This is because those algorithms compute iteratively and re-
quire a good initial value for the iteration.

To accomplish this, we remark that were the star-tracker estimate to have been
determined from the QUEST algorithm [4] or from another solution method [3] for
the Wahba problem, then the value of from the star-tracker data alone would
have been, noting equations (10) and (11),

(26)�oST �
1

�tot
2 � 	NST

k�1
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� k
2 �
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� 2
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2
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1

2
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1

� k
2 Ŵk

trueŴk
trueT

 D� �
1

2
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1
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2 Ŵk�Ŵk�
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2
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Btrue � Dtrue AtrueB� � D�A*�B � DA* ,

B�
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11Equations (22) through (24) illustrate the nonuniform (but not inconsistent) notation in this paper, an un-
avoidable consequence if we wish to retain the traditional notation for well-known quantities. Appendix A
clarifies our conventions.
12When we write only one statistical version of an equation, we will usually choose the sampled value, since
that is the one which will generally enter into our calculations. We shall assume that by using the methods of
an earlier section we have made the necessary transformations so that is always the attitude-error co-
variance matrix of the star tracker in spacecraft body coordinates and transforms from inertial (or any
other “space” reference frame) to the spacecraft body axes.

CST

RST



if the variance is uniform over the star-tracker field of view and known. Thus, the
cost function with incorporated star-tracker attitude becomes

(27)

from which the attitude estimate and attitude-error covariance matrix using all of
the data is readily calculated.

Now

(28)

so that

(29)

The similar calculation of “�” from the sampled version of equation (29), on the
other hand, will yield not but To see this we note that

(30)

where is the star-tracker quaternion estimate from star-tracker data.
If, instead of the typical star tracker, the spacecraft has a whole-attitude sensor

which uses data from which the attitude cannot be calculated in a statistically reli-
able manner using the Wahba cost function (for example, because the error ellipses
are so eccentric that they cannot be represented adequately by circles of error), then
one has no choice but to calculate an effective for that sensor using the sampled
version of equation (29), namely, equation (30), assuming that the sensor outputs
both the optimal attitude and the attitude-error covariance matrix or information
matrix. One can still incorporate the data from that sensor into the Wahba problem
via equation (27) with replaced by for that data set, but, as apparent from
equation (13), the TASTE test for data from that sensor will be disabled, because
effectively (since has been replaced by in equation (13)).

Combining Attitude Matrix Estimates

Although the fastest way to combine estimates of the attitude matrix is via the
generalized Wahba problem, as developed above, it is noteworthy to add that the
optimal attitude matrix, assuming that we have been given and 
can be written equivalently as the value of A which minimizes the cost function 

(31)

with defined by equation (24b). This result is derived most easily by writing

(32a)

(32b)

linearizing equation (31), and comparing the result with the usual least-square cost
function for namely,�̃,

 A � �I � ���̃��� Atrue � O�
�̃
2�
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*���� Atrue � O�
�̃i
*�
2�

D�

J��A� �
1

2
 	n
i�1

 tr ��Ai
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1

� k
2 �I3�3 � Ŵk
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(33)

From a practical standpoint, of course, it is much more convenient to estimate
the attitude via a construction similar to that in equation (27). In fact, clearing the
parentheses in equation (31) leads directly to

(34)

which should be compared with equation (27).

The Generalized Davenport K Matrix

Consider again the calculation of the attitude-error covariance matrix, this time
from the Davenport form of the cost function. From equations (2) and (4),

(35)

we write, in analogy with equation (16),

(36)

with defined as in reference [2]. Thus,

(37)

with

(38)

and

(39)

Partitioning as

(40)

and carrying out the partial differentiations of equation (15) yields

(41)

Noting

(42a)

(42b)

(42c)
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Note that Using sampled values of K and an analogous development
leads to13

(44)

Writing in terms of its four characteristic values and characteristic vectors

(45)

with and leads to

(46)

Thus, are the three characteristic vectors of the inverse
attitude-error covariance matrix. 

Equation (44) can be solved together with equations (42abc) for to obtain

(47)

Note that we can write equation (47) as

(48)

in analogy to14

(49)

Since is traceless, we must have from equation (46), (47), or (48) that

(50)

which corresponds to our earlier result for the star tracker.
Clearly, with respect to the estimated body frame

(51)

with characteristic value The other three characteristic values of (and,
hence, of are
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13 in equation (43) is not a carryover of the which appeared in equation (2) but the result of equa-
tion (42c). Thus, the corresponding quantity in equation (44) is and not 
14Analogously, we may speak of a generalized q-method.

�o.�max�
�o�o



(53)

where here is the i-th characteristic value of Thus, we see clearly, that the
observability of the attitude is related directly to the separation of the other charac-
teristic values of from 

From our decomposition of K above we can readily extract B from K.

(54a)

or

(54b)

For the star-tracker contribution to the K-Matrix we have then

(55a)

and

(55b)

Extension to Scalar Measurements

The generalized Wahba problem can accommodate more complete measure-
ments of the attitude than direction measurements but not less complete mea-
surements. To see this let us reexamine the direction measurement from the
standpoint of an effective attitude profile matrix.

Examine first the QUEST measurement model [3, 4]. For a single direction
measurement described by equations (8) and (9) we obtain readily from equation (15)

(56)

and from equations (23) and (24)

(57)

from which we infer15

(58)

as one would wish.
If, on the other hand, we consider a scalar measurement, namely, the component of
along the (non-random) direction ÛŴ
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trueŴT
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P�̃�̃� .�P�̃�̃� �i

i � 1, 2, 3�P�̃�̃� �i
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15It is this very simple form of the attitude profile matrix for a single direction measurement which permits
the recasting of the Wahba problem as a Kalman filter and a Rauch-Tung-Striebel smoother [17].



(59)

with with the resulting inverse covariance matrix is

(60)

which leads directly to

(61)

and, after further reduction and substitution,

(62)

which cannot be calculated from available data, because the unknown and the
unknown appear explicitly. In equations (57) and (58) these quantities also
appear, but is known from the measurement and is absorbed formally
into whose value is known. Thus, we conclude that the generalized Wahba prob-
lem cannot be extended to include scalar measurements. Likewise, the Wahba
problem cannot be generalized to include direction measurements whose errors are
not described by the QUEST measurement model, since such a measurement model
must be constructed from scalar measurements.

Summary of the Generalized Wahba Problem

In the generalized Wahba problem for a mixture of N simultaneous unit-vector
and complete-attitude sensors (or suites of sensors) we have for the generalized cost
function

with and (63abc)

For a unit-vector sensor

and (64ab)

and for a complete-attitude sensor

and (65ab)

and

(65c)

The quantity may not be available. The use of in place of in equa-
tion (65a) will disable the TASTE test for the data from sensor i. 

By trivial transformation one can write equivalent relations for the Davenport
K-matrix. For a complete attitude sensor (or suite of sensors) the K-matrix ana-
logue of equation (65ab) is

�o i��max i��o i

�max i� �
1

2
 tr�Ri���1

Bi� � � 1

2
 �tr�Ri���1� I3�3 � �Ri���1�Ci

*��i � �o i

Bi� �
1

�i
2 Ŵ�i V̂T

i�i � �o i �
1

� i
2 

B� � 	N
i�1

 Bi�� � 	N
i�1

 �iJ��A� � � � tr�B�T A�

V̂T,
A*�Ŵ�

A*�
Ŵ�

B� �
1

� 2
z
 � 1

2
 
Û � Ŵ�
2 A*� � ��Ŵ��� ÛÛTA*���V̂ ��T� 

Btrue �
1

� 2
z
 � 1

2
 
Û � Ŵtrue
2 I3�3 � ��Ŵtrue�� ÛÛT ��Ŵtrue��T� Atrue

P�̃�̃
�1 �

1

� 2
z
 ��Ŵtrue�� ÛÛT ��Ŵtrue��T

�z
2 � ÛTRÛ,�z � N �0, �z

2�,

z � ÛTŴ � ÛT AV̂ � �z � ÛT �A��̃�Ŵ true � �z
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and

(65de)

The Treatment of Star-Tracker Attitude Estimates 
in General Attitude Estimation

The use of attitude estimates from star trackers in calculating more complete es-
timates of the attitude has been treated before [19, 20], but we repeat that general
treatment here for comparison with that in the generalized Wahba problem. We as-
sume for simplicity that the fiducial body axes coincide with those of the star
tracker and the space coordinate system is that of the star-tracker star catalogue.
Thus, we write

and (66ab)

where is the measured star-tracker attitude quaternion and is the attitude
quaternion of the spacecraft. The quantity denotes the star-tracker measurement
noise. The form of equations (66) guarantees that is always a quaternion of
rotation, i.e., that it always has unit norm. If is the a priori estimate of the
quaternion, then

(67)

Defining

and (68ab)

leads to

(69)

in which all three quaternions represent very small rotations. Equation (69) can be
linearized as [20]

and (70ab)

The estimation of from in either a batch estimator [21] or in a Kalman filter
[22] is straightforward.16 Equation (70ab) has been implemented in our deep-space
missions for the past decade.

Discussion

The Wahba problem has been extended to include measurements in the form of
an attitude matrix or attitude quaternion. This permits us to include an initial con-
dition in the Wahba problem [12] as

(71)B���� �� 1

2
 tr��P��� ��1�I3�3 � �P��� ��1� A*����

�ST�

vST � N �0, RST��ST � � � vST

�q̄��ST� � �q̄�vST� � �q̄���

�q̄��� � q̄ � q̄ *�����1�q̄��ST� � �̄ST
*  � q̄ *�����1

�̄ST
*  � q̄ *�����1 � �q̄�vST� � q̄ � q̄ *�����1

q̄ *����
�̄ST

*
vST

q̄�̄ST
*

vST � N �0, RST��̄ST
* � �q̄�vST� � q̄

Ki� � �max i�  I4�4 � 2���̄BkI i
* � � �Ri���1�T��̄BkI i

* � ��max i�       �
1

2
 tr �Ri���1
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16Note that we have taken care to insure that our quaternions have unit norm. The violation of this constraint
can lead to ambiguous and even silly results [21, 23]. In a batch estimator we will generally wish to compute

iteratively, replacing by after each iteration until convergence. (Here, i
is the iteration index.)

� �q̄��i
*�� � q̄ *�i  ���q̄ *����q̄ *����q̄ *�



or to include attitude measurements from a star tracker as

(72)

An important question, seldom posed by researchers on the most recent subject
of their attention, is whether or not their result is useful. While the formal impor-
tance of these results is obvious, it must be admitted that the practical utility of this
work is limited. Nowadays, attitude determination systems consist usually of (1)
the usual suite of coarse attitude sensors (vector magnetometer, vector Sun sensor,
and infrared horizon scanner), (2) a star-tracker-gyro system, or (3) a GPS attitude
determination system. For none of these does the present algorithm finds applica-
tion. In some cases, a star-tracker-gyro system may not be adequate to meet mis-
sion requirements because of the limited attitude accuracy about the star-tracker
boresight and may be supplemented by a precise Sun sensor. Such an attitude de-
termination system was the case for the Wilkinson Microwave Anisotropy Probe
(WMAP) [24], launched in June 2001. That spacecraft, however, employed an ex-
tended Kalman filter [22] to estimate the attitude. For high-accuracy missions, the
chief use of the Wahba problem is as a preprocessor of star directions in the esti-
mation of the star-tracker attitude [19, 20], sometimes as part of the star-tracker
firmware. The Wahba problem, because of its limitations with regard to the as-
sumed sensor error models and the need for simultaneous data, does not otherwise
find extensive use in high-accuracy missions.

The general differential correction method (equation (70)) is not very burden-
some computationally, since one begins with and to which the Sun sensor
can provide only a very small rotation as a correction. The general differential cor-
rection is fairly simple also, because it has been shown [20, 25] that the QUEST-
like measurement for the Sun sensor can be treated in the Kalman filter in certain
cases as if 

The formal results of the present work, especially with regard to the new results
for the Davenport matrix, K, are the more interesting.
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Appendix A: Statistical Glossary

The following table lists the notation for variables in this paper which may be
random. The choice of whether a random variable should bear the mark “r.v.’’ or the
true value should bear the marking “true’’ is not arbitrary. In general, covariance
matrices, for which the basic definition is always at the true values of the argu-
ments, do not bear the superscript “true’’ for the value “at truth.’’ (Also, one often
estimates the covariance matrix of an initial state and it seems silly to write 
Generally, if a random variable is “unmarked” the true value carries the marking
“true’’; if a true value is unmarked, the random variable carries the marking “r.v.”
State vectors in this work are not random by nature and only their estimators are ran-
dom. For these last we must distinguish free variables from the first three cate-
gories. Random variables whose true values vanish are listed in the table by null
values instead of by the obvious marking. The notation for sampled values is uniform.

Ptrue� .�
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TABLE 1. Statistical Variables

Random Variable Sampled Value True Value Free Variable

—

—

—

—

—

—

—

0 �̃�̃ *��̃ *

q̄q̄ trueq̄ *�q̄ *

AAtrueA*�A*

RR�Rr.v.

PP�Pr.v.

��o�max��max

K trueK�K

D trueD�D

B trueB�B

J true�A�J��A�J �A�
Ŵk

trueŴk�Ŵk


