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ABSTRACT

This document presents a number of algorithms for computing the optimal

rotation which carries a set of reference vectors into a set of observation

vectors. These algorithms, which are based on the q-method of Davenport,

provide very fast means for computing accurately the optimal attitude. They

are thus suited to processing data from attitude sensors which provide the

direction of a known body axis (horizon scanners, Sun sensors, star cameras)

but not to sensors which provide only angle data (such as a single-axis gyro).

One of these algorithms, which provides very accurate results with little com-

putation, is tested for the sensor configuration of the Magsat mission. Numer-

ical results are presented. A possible enhancement of this algorithm is dis-

cussed.
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/ SECTION 1 - INTRODUCTION

In this document several algorithms are presented for computing the optimal

rotation which carries a set of n reference vectors into a set of n corre-

sponding observation vectors. The rotation is optimal in the sense that it

minimizes a least-square loss function.

The increasingly stringent accuracy requirements in determining spacecraft

attitude require the development of optimal algorithms for attitude determina-

tion. When individual sensor accuracies exceed the accuracy requirements

of a mission it is possible to use simple deterministic algorithms, which have

the advantage of being easy to implement and are fast computationally. A

deterministic algorithm uses only the smallest amount of data necessary to

determine an attitude solution. In so doing a subset of the data is discarded.

In some missions--for example Magsat, which inspired the present work--the

accuracy requirement is comparable to the accuracies of the individual sensors

(in this case two star cameras and a Sun sensor). One must, therefore, take

all data into account to obtain the most accurate possible determination of the

spacecraft attitude. In the case of Magsat each of the three sensors provides

an azimuth and coelevation in the body coordinate system (the Sun or some

other star) providing in all six pieces of data all of which must be used to obtain

the best possible determination of the three independent parameters specifying

the spacecraft attitude.

/k z',,

Thus, given the n observation vectors W1, ..., W (for Magsat n = 3),n

corresponding to the directions, as seen in the spacecraft coordinate system,

of n celestial bodies, and the n reference vectors V1, .... Vn, the known

directions of these bodies in the spacecraft-centered inertial coordinate system,

it is possible to write for every rotation matrix R the n equations

A A

w. = R v. + _ i = I, ..., n (i-i)
l l i
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which define the n vectors 6W.. The problem is to find that optimal rotation
l

Rop t which minimizes the magnitudes of the 5W.t . This is the central prob-

lem of this document.

The general problem of minimizing the loss function

n

a.:_ 5w _,._ (1-2)
l l

where the 5W. are given by Equation (I-I) and the a. are positive weights,
l l

was solved by Davenport (Reference I). In terms of the rotation matrix the

minimization of _(R) is a formidable problem since R contains nine unknown

quantities subject to six constraints. Davenport removed this difficulty by

expressing R in terms of the related quaternion _, which has only four com-

ponents subject to the single constraint that the sum of the squares of the com-

ponents be unity. Since R is a bilinear form in _ , £(R) also becomes a

bilinear form in q. The minimization of a bilinear form subject to a bilinear

constraint is a classical problem in modern mathematics which was first solved

by Euler. The solution satisfies an eigenvalue problem. The development of

this eigenvalue problem leads to Davenport's q-algorithm (Section 2), to further

developments of which this document is devoted.

Optimal algorithms have the obvious advantage of yielding more accurate results

than deterministic algorithms. Their disadvantage is that they are sometimes

computationally much slower.

Simplifications of Davenport's q-method which are fast computationally without

sacrificing accuracy, are possible because in practice an optimal rotation can

be chosen to make the 50. very small, i.e.,
I

' W i Rop t
!L6 ( )!i<<l i=l, ..., n (1-3)
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This is not a result of Davenport's q-method but a statement of the nature of the

input reference and observation vectors. It is to be expected that RV. can be
1

made to overlap with W. to within the accuracy of the sensors. For Magsat

this accuracy is typically 10 arc-seconds or in natural units 5 × 10 -5 radians.

This is certainly very small and the techniques introduced in the present work

amount to a Taylor expansion in this small quantity.

Section 2 of this document presents Davenport's derivation of the q-algorithm

as first presented by Keat (Reference 2).

Section 3 of this document derives a general expression for the optimal rotation

(or rather, quaternion) when the angle of rotation is infinitesimally small, i.e.,

when terms proportional to the square or higher powers of this angle can be

neglected. For the case where there are only two observation vectors, a still

simpler formula can be obtained.

In Section 4 the results of Section 3 are generalized to arbitrary rotations. A

special formula is derived for the optimal quaternion which is most amenable

to automatic computation.

Section 5 presents more accurate methods for determining the optimal quater-

nion which are necessary when the angle of rotation is very close to 180 de-

grees. The nature of the exact solutions to Davenport's eigenvalue problem

are discussed. A Rayleigh-Schroedinger Perturbation expansion for Davenport's

overlap eigenvalue is developed. Several iterative methods are also presented.

The suitabilityof these algorithms in different situations is discussed in Sec-

tion 6. The most accurate and efficientalgorithm for the purposes of defini-

tive attitude determination in the Magsat mission is selected. Numerical re-

sults are presented for cases corresponding to the Magsat sensor configura-

tion.

A summary of the analysis for the algorithm proposed for Magsat is presented

in Section 7.

1-3



SECTION 2 - DAVENPORT'S q-ALGORITHM

Davenport (Reference 1) has developed an algorithm for determining optimum

solutions for the attitude given n observation vectors and n reference vectors.

This algorithm has been examined by J. Keat (Reference 2), who analyzed the

algorithm for use in High Energy Astronomical Observatory-1 (HEAO-1) mis-

sion software. The derivation of Davenport's algorithm which is presented

here follows closely the methods and notation of Keat's document.

2.1 STATEMENT OF THE PROBLEM

/% .Px /% /% z_,

Let W 1, W 2, ..., Wn be asetof n observation unit vectors and V 1, V 2,
A

..., V be a set of n reference unit vectors. That these are unit vectors
n

is denoted by the caret over each symbol. Let a 1, a 2, ..., a beasetofn

n (positive) weights. For any rotation matrix R, the loss function .e(R) is

defined as

2.
(2-1)

The rotation matrix R which minimizes the loss function is said to be the
opt A

optimal rotation (in a least-squares sense) which carries the vectors V. ,
1

A

i = i, ..., n, into the vectors W. , i = i, ..., n .
I

zk

In actual practice V. , i = 1 .... , n, may be the position of n stars in some

reference frame (for example, the spacecraft-centered inertial frame) and
/%

W. , i = i, .. °, n, the observed position of these stars in a body-fixed coor-
i

dinate system. The a. are the relative weights of the observations determined

by the quality of the measuring apparatus. R is then the optimal (least-
opt

squares) estimate of the rotation which carries the inertial axes into the body

axes and, thus, provides an optimal estimate of the attitude of the body.
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Since the loss function may be scaled without affecting the result for the optimal

estimate of the rotation, itis possible to set

_t

X _, -- I (2-2)

which will be assumed to be true throughout this work.

It follows that

(2-3)

where

(2 -4)

is called the gain function. £(R) is a minimum if and only if g(R) is a

maximum. Henceforth, all attention will be direeted toward finding R

maximizes g(R).

which

2.2 hLATRIX REPRESENTATION OF THE GAIN FUNCTION

It is convenient to define new vectors V. , i = 1, ..., n,
1

n, according to

and W. , i=l,
1

(2-5a)

(2-5b)
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whence

w,, (2-6)

Defining 3 x n matrices according to

-?94 : W4 ,'_z , ... 'W,,,. (2-7a)

- , Vz ,..._ V,, (2-7b)

the n xn matrix W T RV may be formed. Here W T, an n x3 matrix, is

the transpose of W . The (i,j) component of this matrix is just 0. • R_..
1 3

Thus,

where Tr denotes the trace operation.

_--__T
Note that V. may be interpreted as a 3 x 1 matrix, whose transpose, V. ,

1 1

is a 1 x 3 matrix. In this notation

w_. '_ v_, -- we R v_. (2-9)

and the dyadic (Kronecker product) is written V.W..
l ]

Equation (2-9) will be used interchangeably.

The two notations in
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Since the trace of a product of matrices is unchangedby a cyclic reordering

of the factors it follows that

T,.F.Rvw"]
(2-10)

or,

(2-ii)

where

'_ . WV "r (2-12)

(2-13)

a ^ T

•w _, Q,,_ W_ V._ (2-14)

2.3 THE GAIN FUNCTION IN QUATERNION FORM

The quaternion

by

representing a rotation is a four-dimensional vector given

A

(2-15)
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A /X

where X is the axis of rotation and 0 is the angle of rotation about X . Note

(2-16)

The relationship between R and _ (sometimes called the Euler symmetric

parameters in this form) is well known (Reference 3).

(2-17)

where I is the identity matrix and Q is a skew-symmetric matrix given by

(2-18)

or, in terms of the Levi-Civita symbol, ¢ijk ' defined to be completely anti-

symmetric in the indices i,j,k with E12 3 = 1)

(2-19)

In terms of the quaternion _ the gain function may be written as
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It is convenient to define scalar, matrix, and vector quantities

according to

(_,S,Z

A

(2-21)

l_ ra _T ^

s -- _._". z.m_.,,,,v+÷v,_,.'] (2-22)

I_ A A

i = Z a_Cw_,v_5
(2-23)

Equation (2-23) is equivalent to

(2-24)

In terms of these quantities

- _"s c?
(2 -25)

-+ _, a_, _

: +zzl-,,_,Q,z.,,;c_,_+¢+x._,\
(2-26)
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,&

(2-26)

(Cont'd)

Using these results

(2-27)

A simple rearrangement yields

_1"

(2-28)

where

[ l'J$-_" :i: ;z

(2-29)

2.4 DETERMINATION OF THE LEAST-SQUARES ATTITUDE SOLUTION

The problem of obtaining the optimal estimate of the attitude has been reduced

to finding the quaternion _ which maximizes the gain function of Equation (2-28)

subject to the constraint

_1".-

2 2-" / (=-=o)

The constraint is taken into account most easily by the method of Lagrange

multipliers, A new gain function g'(_) is defined

(2-31)
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g'(q) is now maximized without constraint and the unknown Lagrange multiplier

k is determined such that Equation (2-30) is satisfied. Straightforward dif-

ferentiation establishes that g'(_) attains a stationary point provided

Thus, k is an eigenvalue of K . Since K is real symmetric (K T = K) k is

always real. Examination of Equation (2-28) shows that X must also be the

largest of the four eigenvalues of K since the maximum value of g(_) is

sought. The constraint, Equation (2-30), can always be satisfied since Equa-

tion (2-32) does not determine the norm of _. This is Davenport's algorithm

for determining the optimal least-squares attitude.

Itmay be noted in passing that since Tr K = 0 the sum of the eigenvalues of

K must also be zero.
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SECTION 3 - OPTIMAL INFINITESIMAL ROTATIONS

A simple and elegant solution obtains in the case where the observation vec-

tors differ from their respective reference vectors by a very small amount.

In this case the optimal rotation is infinitesimal, i.e., the angle of the rota-

tion carrying the reference vectors into the observation vectors is so small

that terms proportional to the square or higher powers of that angle can be

neglected within the accuracy requirements of the attitude solution. In this

section the general form of the solution where the angle of rotation is infinites-

imal (in the above sense) is derived. It will be shown that the greatest eigen-

value of K in the infinitesimal case differs from unity by only very small

terms. This allows the four dimensional eigenvalue problem to be converted

approximately into a system of three linear equations.

3.1 THE INFINITESIMAL K-MATRIX

Since the angle of rotation is assumed to be infinitesimal, it is possible to

write

with _i a skew-symmetric matrix which is O(1)

pared to unity. In the notation of Equation (2-18)

A

/%

where X.
t

is the ith axis of rotation (a unit vector) and

and ¢i is very small corn-

(3-2)

(3-3)
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By O((k) is understood a quantity which tends to zero as a constant × k

E -* 0 . In the following

as

It should be noted that the _,V. and V. do not determine ¢. and t'_. (or
I I l i

equivalently _. and _. ) uniquely. The assumption, however, that W.
1 l

/x l

V. differ by an infinitesimal amount implies that it is possible to choose
1

(or X i ) such that

magnitude when X.
l

and

1

l¢il < < 1 . Clearly, _i will achieve the smallest possible
/%

is chosen parallel to @. x V..
l l

In the infinitesimal case

S im

(3-5)

where _.A,B] = AB - BA denotes the commutator of A and B . Since the

trace of a commutator vanishes

x_

-- i ÷ 0 (:=) (3-6)

Note also

Z --T_.a_,w,:_,v,_= OLr..)
"I.-"

(3-7)
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2
The fact that (_= 1 +O(c ) and

X =1 +O(¢ 2 ) where k
max max

proved in two steps.

Z = O(c) will lead to the result that

is the largest eigenvalue of K . This will be

3.2 A LEMMA FOR THE NULL ROTATION

The following lemma will be proved:

Lemma: For the null rotation (( = 0) k = 1 and is a simple eigenvalue
max

/%

(non-degenerate) provided that the reference vectors V. i = 1, ..., n,
t

are not all coIltnear.

Proof: = 0 implies that ¢. = 0 , i= 1, ..., n . In this case
l

_5" = i (3-8)

^ A T

2% v,:
l',e

(3-9)

(3-10)

K then has the form

(3-11)

so that 1 is certainly an eigenvalue of K . To show that it is the largest

eigenvalue and non-degenerate the eigenvalues of S - I must be determined.
o

Examine the eigenvalues of S . Let _ be a normalized eigenvector of S
o o

with eigenvalue _ . Then

A

So "0" = /_ _ (3-12)
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and

/_,41

AT" A

(3-13)

(3-14)

The expression on the right is non-negative; hence, tz _ 0 . Likewise,

2,Za4 (v,:._) _,_ Z a.,.:= Z (3-15)

so that

(3-16)

tt attains the value 2 if and only if

V_ -- +. _JP _' =- i_..._ vl, (3-17)

Likewise the eigenvalues k' of S - I satisfy
O

-1 _ '_ _ ÷ I (3-18)

and k' = + 1 if and only if Equation (3-17) is satisfied. This proves the lemma.

It may be noted that the

tation provided that the

k' will be significantly less than unity for the null ro-
A

V. are significantly different from one another. This
1
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point will be examined in greater detail for the case of two observations at the

end of this section.

3.3

Examine now the characteristic polynomial for

DETERMINATION OF THE OPTIMAL INFINITESIMAL ROTATION

K when _#0. Setting

(3-19)

with I_"1 = O(1) , K can be written as

(3-20)

Without loss of generality the coordinate system may be chosen so that

"-_= ]-_1 _ . Then the determinant defining the characteristic equation for

k may be expanded in minors to give

G

(3-21)

Thus, itfollows that k is a solution of

(3-22)
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from which

(3-23)

The same result will not hold for the three smaller eigenvalues of K , which

will, in general, contain corrections to the "unperturbed" values of order _.

Examine now

(3-24)

The first three componentsof this equation are

(3-25)

which leads to

(3-26)

Recalling
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it follows that

(3-27)

From S = S + O(E) a slightly poorer approximation also results:
O

- -,-oct'.) (3-28)

These are the desired algorithms.

Implicit in the above equations is the assumption that S - 2I and S - 2I are
o

non-singular. Since these two matrices differ by an amount of order E , it is

sufficient to show that S - 2I has no eigenvalue of infinitesimal size.
0

Denote the three smaller eigenvalues of Ko by k_ °) , k3(o) , X(4o) . Then the
/ %

eigenvalues of S -2I are _,!op _ 1 , i=2, 3, 4. For the case of only two
O L

observations the three eigenvalues of S - 2I are given by
o

(3-29a)

-i -_ - Z (3-29c)

none of which vanish.
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For the special case of equal weights (a 1 = a 2 = 1/2) these become

Xz. -.I - . - (3-30a)

_to'_ A3 " -l

_} -- I = -- 2 (3-30c)

which are not infinitesimally small provided that IV 1 • V 2 = tW 1 • W21 is

not infinitesimally close to unity. Thus, an important condition on the useful-

ness of Equations (3-27) and (3-28) is that

If Equation (3-31) is not satisfied then -Q as defined by Equations (3-27) or

(3-28) will contain large admixtures of unwanted attitude solutions.

Expressed in terms of the determinant of S - 2I the condition becomes
O

The essential content of Equations (3-31) and (3-32) is that the solution for the

attitude is most accurate when the observations are orthogonal. This is true

for the exact solution of Equation (2-32) as well.

3.4 A SPECIAL FORMULA FOR THE CASE OF TWO OBSERVATIONS

Equations (3-27) and (3-28) are a great simplification of the exact Equation (2-32)

replacing the eigenvalue problem for a 4 × 4 matrix by the inversion of a

3-8



3 x 3 matrix. For the case of only two observations Equation (3-28) has a still

simpler form.

2
To order _ the vector components of the quaternion representing an optimal

infinitesimal rotation is given by

(3-33)

which follows directly from Equation (3-28). The evaluation of Equation (4-1)

will be greatly simplified ifa simple form can be found for the inverse of

1S °I- 2

For n observations

Since the algebra of

write the inverse of

II w. wT , i, =I; j 1,

I _ .121_._SoJ as

• *°9 n I is closed, itis possible to

A

(3-35)

The coefficients P.. may be determined by insisting that
U

Cz-Z
(3-36)
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Noting that

^ a'r a a "r ^ ^ ^ ^ T

Equation (3-36) becomes

(3-38)

or

(3-39)

Defining n x n matrices A and B according to

(B here should not be confused with B of Section 2) leads to the solution in

matrix notation

: ( '_ ""_)"' A (3-41)

3-10



Thus the inversion of a 3 × 3 matrix has been replaced by the inversion of

an n x n matrix. Clearly, this is of practical importance only for the case

n=2 . For that case

l-a,
_7__ _) -- ^ ^

-aL Cw,.w 

- 0.,(W, ' W,

I - (:I.,.I
J

(3-42)

for which the inverse is

(3-43)

as may be easily verified. From Equations (3-41) and (3-43) it then follows

that

I I 0" l O't" (3-44)

Recalling

A _ T

(3-45)

A A

I
(3-46)
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leads immediately to

A _ ^ 4

0., W,_,V,. 0._.W,.x V,.

(3-47)

. O_t')

with a and b given by

i

1_, ^ 14 (3-48a)_

A A

C'_, w_._
(3-48b)
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SECTION 4 - APPROXIMATE OPTIMAL SOLUTIONS

"FOR FINITE ROTATIONS

The result of the last section may be generalized with very little change to

apply to finite rotations as well.

Recall Equation (3-26) which read

(4-1)

This equation is true for an arbitrary solution to Equation (3-24) provided that

the matrix (S - (a + ),max) I) is nonsingular. It will be shown in Section 5.1

• that this is true so long as the angle of rotation is not y .

In terms of the Gibbs' vector, Y ,

=

Equation (4-1) becomes

All the quantities appearing in Equation (4-3) are immediately obtainable except

k . Thus the specification of Y is limited only by the uncertainty in the
max

overlap eigenvalue k . Once Y is known, q may be determined from
max

(4-4a)

(4-4b)
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4.1 THE OVERLAP EIGENVALUE FOR FINITE ROTATIONS

We now prove the following key result.

A A

Let V. , i=l, ..., n, and W. , i= 1, ..., n , be sets of reference andob-
l 1

servation unit vectors, respectively, and let it be supposed that it is possible

to find a single rotation matrix R such that
m

with

Let

Then

_*._w = :I..4-OCl_ I) (4-8)

whatever may be the value of the angle of rotation characterising

t

The proof of this result in the special case that each W.
L

only an infinitesimal rotation was the work of Section 3.

the identity matrix. The result will be used again here.

R
m

/%

differed from V.
z

In that case R
m

by

was

t t

That there exists a matrix R which minimizes the differences IW. - R V. 1
m z m z

in a least squares sense was shown by Davenport's algorithm (Section 2). That

these differences will be infinitesimal is not a result of Davenport's algorithm
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but rather an assumption on the nature of the

introduction (Section 1).

Recall that the gain function g (_) given by

W. and V.
1 1

as pointed out in the

-r'

(4-9)

is identical in value to

provided that R and _ are related by Equation (2-17)o

If qm maximizes the right member of Equation (4-9) then, clearly, by Equa-

tions (2-30) and (2-32)

and the same is true for the related equation for R
m

(4-12)

Consider now the case where instead of the set of reference vectors V. ,
t

i = 1, .°., n , a different set is chosen, namely

,A A

(4-13)

where R
o

the same.

is an arbitrary rotation matrix. The observation vectors remain
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The gain function g'(R) for the rotation matrix
A

into the set V. is taken to be
l

R which carries the set
/%

U.
l

A
A

't,'-" I (4-14)

Obviously, the rotation matrix R' which maximizes this g' (R) is
m

" (4-15)

and

(4-16)

with k having the same value as in Equations (4-11) and (4-12) as may be
max

verified by direct substitution.

Now let

(4-17)

which does not affect the value of X
max

For this choice of R
0

with the same E. as in Equation (4-5).
1
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But this is just the case of the infinitesimal rotation of Section 3, so that it

must follow that

(4-19)

independent of the size of the angle of rotation of the optimal rotation. (For

the U. , i= 1, ..., n, of Equation (4-13) with R = R itfollows that R'
1 O m In

is the identity matrix corresponding to a vanishing angle of rotation of the opti-

mum rotation.)

From the practical standpoint the order of the deviation of k from unity
max

is determined only by the order of the computational and experimental errors

in the reference and observation vectors and not of the actual angle of rotation.

4.2 A SPECIAL FORMULA FOR THE COMPUTATION OF FINITE OPTIMAL
ROTATIONS

Equation (3-47) can hold only for infinitesimal rotations since itreplaces the

matrix S by S . Markley (Reference 4) however, has offered a useful re-
O 9

sult for finiterotations which reduces to Equation (3-47) when the optimal

rotation is infinitesimal.

The problem is to invert the matrix

for an arbitrary 3 × 3 matrix S . We show with Markley that the inverse of

this matrix may be expressed as a quadratic polynomial in S . The form of

the constant multiplying I is arbitrary and has been chosen to agree in form

with Equation (4-1).
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Markley's formula may be derived as follows.

If _ is an eigenvalue of S , then the characteristic equation for is

(4-20)

with

-k r. s (4-21a)

a- a_÷S (4-21b)

(4-21c)

By the Cayley-Hamilton theorem S also satisfies Equation (4-20) so that

(4-22)

It follows that any function of S may be written as a quadratic polynomial

in S . Therefore, it is possible to find constants _ , fl , and y such that

l-J .. I (4-23)
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&, fl , and _, may be determined by the same method which was used to de-

termine P.. in Section 4.1. This leads to
U

(4-24a)

($_ m _ -_" (4-24b)

(4-24c)

and

(4-25)

Equation (4-25) is exact. Making the approximation k = 1 leads to
max

which is the analogue of Equation (3-47) for a finiterotation and is true for any

number of observation vectors provided that at least two of the weights do not

vanish. It is simple, though tedious, to verify that Equation (4-26) reduces to

Equation (3-47) for the case of an infinitesimal rotation. The generalization

of Equation (3-47) for n observation vectors but for infinitesimal rotations is

obtained by setting X _ff and S _ S . Then
max o

= --- _e. I + } + 0(8 _) (4-27)
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where K and A are computed from S . 5 is defined as the larger of
o O O

and the angle of rotation. This distinction between 6 and ¢ will be used

henceforth to distinguish approximations which hold only for very small angles

from those which hold everywhere.

A somewhat better approximation than Equation (4-27) can be had by keeping

k _ a but not approximating S This leads to
max o

(4-28)

The small computational advantage which these last two equations have over

Equation (4-26) is more than outweighed by the disadvantage of their restricted

region of applicability. The approximation X _ 1 will never be a poorer
max

approximation than X _ cr.
max
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SECTION 5 - HIGHER APPROXIMATIONS FOR FINITE

OPTIMAL ROTATIONS

Itwas remarked in the last section that the accuracy of determining an optimal

rotation, whether the representation be the rotation matrix, the quaternion, or

the Gibb's vector, is limited only by the accuracy with which k can be
max

determined. It is the purpose of this section to present more accurate expres-

sions for k . For most cases this is unnecessary since E is already very
max

small and _2 is clearly negligible. The difficultyis that the matrix

E(kma x + _)I - s]

is ill-conditioned for rotations through y and cannot be inverted at that point.

Thus, small discrepancies in k are greatly magnified by the inversion of
max

this matrix for angles close to _ and from a practical standpoint accuracies
2

in k higher than O(_ ) are needed,
max

This section first discusses the nature of the exact solutions for the eigenvalues

of the K-matrix and shows why the matrix

[(kma x + (_)I - S]

becomes ill-conditioned when the angle of rotation passes through _7. Follow-

ing this a number of methods are presented for arriving at a more accurate

determination of k These methods are
max

i.

2.

3.

An iterative solution of the characteristic equation for

A perturbation expansion for k
max

An iterative solution for the Gibbs vector and k
max

k
max
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Of these, only the first is of practical importance. The secondand third

methods are given for mathematical completeness and for the insight which

they provide on the solutions.

5.1 EXACT SOLUTION OF THE EIGENVALUE PROBLEM

The eigenvalues of K are determined from

(5-i)

or

,k+
(5-2)

Expanding the determinant in minors along the bottom row and right column

leads to

_ (5-3)

where M.. is the adjoint matrix of S - ((_ + k) I . Recalling the relation be-
U

tween the adjoint and the inverse the above equation may be rewritten as

(5 -4)

Equation (5-4), though computationally identical to Equation (5-1) provides

greater insight into the nature of the eigenvalues of K.
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Since S is a real symmetric matrix there exists an orthogonal matrix

induces a similarity transformation diagonalizing S

U which

,_., o o 1
-U'S-U "'r - o ._.= 0

(5-5)

Let

- LrZ (5 -6)

then Equation (5-4) may be rewritten as

7.

(5-7)

Graphically the solution of Equation (5-7) is shown in Figure 5-1.

The right member of Equation (5-7) is a segmented curve with four asymptotes:

three verticle lines with abscissas s. - (y, i = 1, 2, 3 , and a horizontal line
i

with ordinate ¢r. The leftmember of Equation (5-11) is a straight line of unit

slope passing through the origin. The two curves intersect at the points

(ki , ki) ,i= 1, 2, 3, 4.

The following facts are evident from the figure:

1. Equation (5-7) (and therefore also Equation (5-1)) will always have

four solutions (including multiple roots)

2. Multiple roots can occur if S has degenerate eigenvalues

!/
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3 i_.i 12
y=O+_

i=1 _" + a --S i

Figure 5-1. Graphical Solution of the Eigenvalue Problem

for the Davenport K-Matrix
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3. A. >CY
max

Q Since k can never exceed unity the second largest eigenvalue
max

can approach kmax if s 3 - ¢; becomes large enough, i.e. , if S

has an eigenvalue of magnitude k + a
max

The question of when S has an eigenvalue

Recall Equation (4-3), which read

k
max

+ (_ must now be addressed.

A

If X is the axis of the optimal rotation and e the angle of rotation, then it

follows from Equation (2-15) that

Y then is everywhere finite except at e = +y . Since the magnitude of Z

never exceeds unity it follows that one of the eigenvalues of [(k +if) I - S]
max

must vanish when e = ±y and that this matrix is nonsingular for 1el < rr .

Thus, for rotations through 17 it must follow that

or in terms of the eigenvalues of the K-matrix

when the angle of rotation is ?T .

This does not contradict the result of Section 4. I. Only one eigenvalue of

(the largest eigenvalue, kmax) need be independent of the angle of rotation.

5-5
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Application of Equations (4-23) and (4-24) to Equation (5-4) leads to a convenient

expression (reference 4) for the characteristic equation for X , namely

or

(5-13)

with

(5-14a)

_ _.;t _ _ _ (5-14b)

(5-14d)

Equations (5-13), (5-14), and (5-8) together with Equations (4-23) and (4-24)

provide a very convenient means for computing the optimal rotation (repre-

sented by Y) to arbitrarily high accuracy since the same constants ((_, _ ,

__ __ $2_)and A) and vectors (Z , SZ , and appear both in the coefficients of the

characteristic equation and in the algorithm for inverting the matrix

[(k + (Y)I - S] . k can be determined to arbitrarily high accuracy by
max max

applying the Newton-Raphson method to Equation (5-13) using as a starting

value X = 1 .
max
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/ 5.2 PERTURBATIVE SOLUTIONS

Equation (5-4) suggests an obvious approximate expression for k when
max

the angle of rotation is small. We introduce the quantity 6 defined as

(5-15)

where ¢ is given by Equation (4-7) and O is the angle of rotation of the optimal

rotation. It then follows that

Substituting this expression tino the right member of Equation (5-4) leads to

and substituting this expression into Equation (5-8) leads to an expression for

_" which errs by terms of order 65 . A more systematic method for obtaining

stillhigher order approximations will now be presented.

Equation (5-15) resembles strongly the result to second order of a perturbation

expansion in Z . In fact, a complete Rayleigh-Schrodinger perturbation ex-

pansion (Reference 5) of k and Y" is possible.
max

Define

(5-18a)

(5-18b)
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and

Thus,

Nta) " go
(5-19b)

t$) "_" K (5-19c)

Note that K
o

in Section 3.

defined by Equation (5-16a) is different from K defined earlier
O

As a function of _ the eigenvalue problem for the quaternion becomes

For small rotations r-zi is much smaller than the eigenvalues of S - 2_I .

It may therefore be expected that an expansion of _(_) and k(_)

(5-2 la)

(5-21b)

is possible, which converges in the interval 0 _ _ _ 1 . Then

(5-22a)

(5-22b)
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it being anticipated that for suitable values of X(0) the series will converge

to k and not to some other eigenvalue of K.max

Substituting Equations (5-21ab) into Equation (5-19) and equating terms of equal

order in o_ leads to

= (5-23a)

_ --(I] -- t.} (5-23b)

(5-23c)

• .. etc., or

(.+..>,,+,).+,.m+_ i.+,,.,;. _ >.:).'_,+,.+,:.+
#

"I,'+i

(5-24)

(5 -25)

From the previous discussion it is obvious that the solution of Equation (5-24)

is given by

_a'} : _ (5-26a)

(5-26b)
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Equation (5-25) does not specify the componentof p(k) which is parallel to

p(0) . Therefore, a subsidiary condition may be imposed on p(k)

(5-27)

so that p(k) possesses no componentalong p(0) .

may then be inverted to give

The operator (K - k(0))
O

, , }
4'-" l (5 -28)

with

7"

Operating on Equation (5-25) on the left with p (0)T yields

(5-29)

on,,) N p (5-30)

Equations (5-28) through (5-30) are the standard solutions to the Rayleigh-

.
Schrodmger perturbation expansion.

The first few terms of the expansion may be calculated readily.

ience the following notation will be introduced

__.Z---. _° = 1. ,, _
go'W]:

For convert-

(5-31)
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Thus,

(5-32)

X_ _"_'N p
-- _fJ)

--Z _.
$-_vZ

(5-33)

(5-34)

Note that

(5-35)

is the same expression as Equation (5-15) above.

Continuing the expansion

p r -L. Np =0 (5-36)

(5-37)

p = LX _= p (5-38)
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: = - = (s_z=.z)=_Z"

( s- a='=:)3

(s-z:-z)3

- x
LS-t _J

(5-39)

(5-40)

(5-41)

In general,

_ (z _)

- o)|)2_ ...3

(5-42)

(5-43)

The kth-order term will contain expressions of the form

with m = 1, 2, ..., k. However, by applying the Cayley-Hamilton theorem

of Section 4.2 this expression need be calculated only for m = 1, 2, and 3 , or

even more conveniently, for m =-1, 0, and +1.

!
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::)i Setting

(5-44)

with

(5-45)

leads to

y = (_.+Xltt,_ Z + C)( .) (5-46)

Itmay be pointed out that the perturbation series for k need not converge
max

necessarily. However, the expansion for k can be expected to converge
max

at least asymptotically in the sense that

w -4" -t...,_ -,-0 tx_'_'+'')
(5 -47)

i.e., the error in truncating the perturbation series is of the same order as

the first neglected term. For further details on asymptotic series see Refer-

ence 5.

_i:(i'

The perturbation expansion is of only limited applicability. This is clear from

the fact that k(0) =(y , which in some cases is close to -1 for e =?r , while

k is close to unity. Thus the perturbation expansion will converge very
max

slowly (ifat all)for all but very small angles (up to a few degrees). Computa-

tion of the perturbation series is, in fact, more complicated and more time
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consuming than the iterative computation of X
max

equation.

5.3 AN ITERATIVE SOLUTION

from the characteristic

The perturbation expansion above may be converted to an iterative solution.

An iterative solution has the advantage over a perturbation expansion in that

convergence properties are usually better and fewer storage locations are re-

quired in machine computation. This advantage may be only academic since

approximations to Davenport's algorithm are worthwhile only ifthey require

littlecomputation, At some point one is better off to solve the four-dimensional

eigenvalue problem explicitly. However, we include the iterative solution for

completeness and because itis conceptually very simple.

Define

= .- (Zm÷i},,-+,) _o_÷ _o+ ....,. ? (5..48)

_ -- -_ + °.. + (5-49)

Since

Pt,-.*,_ 1 (5-50)

for all m it follows that
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at least in the asymptotic sense defined in Section 5.2. Clearly,

+O(
(5-52)

and

[l_lm.l,2) -e

(5-53)

Define

•-e {,Z_.ed_ X t.t_). -l
(5-54)

whence from Equation (5-46)

"_ (z_._) +'s"' " ¥ + 0C_" )
P_z_._8_ (5-55)

Combining Equations (5-52) through (5-55) leads to the following set of recursion

relations

>, _ = _" (5-56)

t:tm÷z) "* _ (_.m+i)
5-58)
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While the perturbation expansion of Section 5.2 may be unstable, Equa-

tions (5-56) through (5-58) will have stable solutions at least for small angles

of rotation. This can be seen from the fact that an increase in X(2m) with re-

max x(2m+2 )spect to X(2m-2) will decrease -_(2m+l) relative to _(2m-1) . Hence
max max

will be smaller than X(2m) .
max

The computation of Equations (5-57) and (5-58) can be simplified by using the

Cayley-Hamilton theorem as in Section 4.2. Define

(5-59a)

/_aJ., " /S (_l_.w) (5-59b)

Then

(5-59c)

(5-60)

(5-61)

which has the advantage that the matrix operations need be performed only once.

Equations (5-59) and (5-61) define a recursive algorithm whereby the error

decreases by two orders of magnitude (from O(_ 2m) to O(_ 2m+2) ) with each

cycle. It is therefore less efficient than applying the Newton-Raphson method

to find the root near 1 of the characteristic polynomial given by Equation (5-13)

and also demands considerably more computation.
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There is no reason to use k(0) = a as the initialvalue of k in the iter-
max max

ative loop of Equations (5-56), (5-57), and (5-58) except to maintain an arti-

ficialand unnecessary resemblance to the rather cumbrous perturbation series.

The iterative method will have wider application and converge more quickly if

instead the choice

t_'J

)%_ _ _ (5-56')

is made.

Itshould be noted that Equation (5-58) is not well adapted to computing k
max

for rotation angles near e = y since as e -*17

---,o (5-62a)

(5-62b)

but
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SECTION 6 - NUMERICAL RESULTS AND DISCUSSION

The preceding text offered a large number of algorithms by which optimal solu-

tions for spacecraft attitude can be generated. The problem now is which one

to choose in actual application.

One may immediately discard for most applications those algorithms which are

applicable to only small angles such as Equations (3-27), (3-28), (3-47), (4-24),

(4-25), and the perturbation expansion of Section 5 since these are for the most

part no simpler to implement than replacing k with unity in the exact
max

formula.

An exception may be made in two cases. In the first case one may have some

foreknowledge of the spacecraft attitude. The difference between this a priori

attitude and the true attitude may be sufficiently small that these small-angle

algorithms are useful. The computational advantage, however, seems very

slight compared to calculating the true attitude directly by a more exact method

without using an intermediate attitude solution unless the analytic structure of

these intermediate attitude solutions is particularly simple.

In the other case one may imagine the spacecraft to have some high pointing

accuracy in inertial space. In that case the angle of rotation is always small

and the matrix S is always very close to the matrix S of Section 3 for all
o

allowed orientations of the spacecraft. The matrix [2I - S ]-1 need then only
o

be computed once for all times and the vector components of the quaternion are

obtained immediately by the same linear transformation of the vector Z . The

amount of core storage required under these circumstances would be very small

and the algorithm of Equation (3-28) could easily be implemented onboard.
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The Magsat spacecraft rotates about its pitch axis at a rate of about 4 arc

minutes per second and, thus, one is led to examine the more exact and univer-

sally applicable algorithms. This limits the choice to using the Equation (4-22)

with one of three possible choices for X . These are
max

I. X =i
max

2e, k is obtained by applying the Newton-Raphson method to the
max

characteristic Equation (5-3) using X = 1 as a starting value
max

o k is obtained by the iterative method of Equations (5-59) andmax

(5-61) using X = 1 as a starting value.
max

The third choice may be eliminated since itis more cumbersome to implement

than the second and not more accurate. Therefore, only the first and second

choices have been examined numerically for a large number of possible rota-

tions.

The first two choices above are, in fact, the same method. The first choice

is simply the zeroth iteration of the Newton-Raphson method applied to Equa-

tion (5-3), with a starting value of X = 1 . It will be more convenient,max

therefore, not to speak of choice 1 or2 but rather of the order of iteration of

the Newton-Raphson method.

These attitude computation algorithms have been tested with a sensor configura-

tion approximating that of the Magsat spacecraft.

sensors and orientations:

This includes the following

C oelevation Azimuth

Sensor Degrees Degrees

Fine Sun sensor 180 -

Star camera 60 45

Star camera 60 135

6-2



The coordinate system in which these sensor orientations are defined is given

in the Magsat Fine Attitude Determination Study (Reference 6). The results

of this section, of course, are independent of the choice of coordinate system.

In this coordinate system the three model reference unit-vectors are

A

, '/. ')-r"

% = (-4_'n' > _ '/.-,-')"r

(6-1b)

(6-1c)

The smallest angle between any two vectors is 60 degrees; thus_the condition

that the reference vectors (or the observation vectors) not be all collinear is

well satisfied.

The algorithm for computing the optimal attitudes were subjected to two tests,
/%

first for input data where the W. were chosen such that
I

and secondly for input data where the data were chosen such that

A

(6-3)

(6-4)
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The 5V. were chosen arbitrarily to have the values
1

(6-5b)

.._ -r

_/$ -- (0_ O_ £) (6-5c)

with

-5"
£ = S'xao

(6-6)

/% ,_,

so that compared to V i each U i has an error equivalent to a rotation of about

10 arc-seconds. The matrix R -1 is chosen so that the optimal rotation which
o

carries the U. into the V. is the identity matrix. If this specific choice were
1 1

not made, it would be difficult to define precisely what is meant by a rotation

through a given angle.

A

In each test a true quaternion qtrue was constructed for a given e and X

according to Equation (2-15) and the matrix R(_true ) was constructed accord-
,_, A

ing to Equation (2-17). Then, given the W. and V. , the algorithm was used
l 1

to compute qtest " The accuracy of the algorithm was determined by comput-

ing

(6-7)
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which ought to be much smaller than _ .* In terms of the angle of rotation,

0 , D has the approximate value

(6-8)

where A8 is the angle of rotation from the true attitude solution to the test

attitude solution. Thus, for true angles of rotation near 7r , where the algo-

rithm meets the most difficult test,

(6-9)

For the first test (for which k = 1 exactly) it was found for many differentmax

choices of the true axis of rotation .X that the algorithm gave solutions which

were accurate to within 1 arc-second so long as

For values of I_ - 8true I smaller than this value, the accuracy of the results

is much poorer and there is the possibility of encountering overflows. Over-

flows occur at these values of @true because a double precision real variable

in FORTRAN has only 16.8 significant decimal places. The cause of the over-

flow is the division by 7*** (see Equation (4-22)) which tends to zero as

-_ 7r Since 7 depends on the difference of quantities which differ by@true "

O(117 - etrue 12) , it becomes very probable that the value of 7 will be truncated

*qtrue and qtest were always chosen to have the fourth component non-

negative.

**When no units are given for angular measure these may be assumed to be
radians.

***In Section 6, y always means 7(kmax) , likewise for a and _ .
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l?r- etrue I <_10-8 . If single precision variables were used, theseto 0 when

overflows would be expected to occur when 177- etrue t < 10 arc-seconds ,
which for Magsat is not acceptable.

The second test with "noised" observation vectors requires some detailed

discussion. For X = 1 (no iterations)typical errors were 10-10 and
max

the algorithm began to break down for 117- e I < 10-5 at which point the com-

putational error was already as large as 1 arc-second.

For one iteration of k the quality of the algorithm improved dramatically.
max

Typical computation errors were 10 -15 radians for angles no greater than

179.5 degrees. For I_ - e I _ 10 -8 the error was no worse than 10 -8
true

(_ 0.002 arc-second), after which the algorithm began to break down or even

overflow.

For two or more iterations of k the results were not quite as good.
max

Typical computation errors were 10 -10 and became as large as 0.3 arc-second

for Irr - 0truel = 10 .6 (_ 0.2 arc-second), after which they became much

worse.

The greater success of the algorithm with only one iteration of k can be
max

understood in terms of the size of ¢ and the truncation error of the computer.

The least significant bit for a double precision word in FORTRAN is equivalent

to 10 -16"8 in decimal notation while _10 -4"3 Thus, 10 -16"8 3.9

4
which is very close to _ , the order of the "algebraic" error in ), after

max

one iteration of the Newton-Raphson method. The order of the "algebraic"
8

error after the next iteration is ¢ , which is lost in the truncation error of

the computer. Thus, the accuracy of computing k cannot be improved
max

by further iteration of the Newton-Raphson method. If there is a close neigh-

boring root to the one sought, further iteration may even degrade the result.

This is indeed what happens when e approaches t7 .
true

6-6



The optimum order of iteration is a function of the computer and the "noise"

level of the input observation vectors. For ¢ = 10 -2 (_ 0.5 degree) two itera-

tions would probably give the best results. Had single precision been chosen

for testing the algorithm for _ = 5 × 10 -5 above, the value k = 1 , i.e.,
max

zero iterations, would have yielded results which could not have been improved

by further iteration. In each case the optimal order should be obtained from

trial computations like the ones performed above.

The probability of overflows at angles near y may be decreased by computing

somewhat differently. This also improves the accuracy of the solutions near

e=rf.

Note that

Y = _ _ (6-11)

with

X
(6-12)

In general, I_l is O(1) for angles of rotation close to _r . Exceptions to this

can occur as noted below.

From Equation (6-11) it follows that

•= ÷1
(6-13a)

(6-13b)
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Using Equation (6-13) rather than Equations (6-11) and (4-4) restrict the possi-

bility of overflow to those cases where _, and all three components of "_ vanish

simultaneously.

It was shown in Section 5.1 that the matrix L(X
max

eigenvalue only for rotations through ?r . From

+o) z-s] had a vanishing

a.+
(6-14)

it follows that 7 vanishes only

From Equation (6-11)

(6-15)

Since 0< [-_1 < _ for o<e<rt it follows that -_ can vanish only for 0=0

or 0 =77. -_ must vanish for 0 = 0 since Q vanishes there. X can also

vanish at 0 = ?r only if the rotation satisfies certain subsidiary conditions,

which we now determine.

Note first that X can vanish if and only if Z vanishes. This follows from

(6-16)

and

w (6-17)
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The matrix [(_I +/3S + S2] is clearly unimodular and, therefore, nonsingular.

Hence, X vanishes if and only if Z vanishes and it is sufficient to determine

the requirement for the vanishing of g for rotations through rr.

Neglecting the errors of observation

A

(6-18)

/%

If _ is the axis of rotation then V. may be decomposed as
1

(6-19)

with

(6-20a)

(6-20b)

For a rotation through

•-4 II --I 1

. (6-21)

whence

4. ',
(6-22)
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or

(6-23)

with

AT

(6-24)

the matrix which was introduced in Section 3.2.

Thus, Z , and hence X , vanishes for a rotation through _r if and only if the

axis of rotation _"n is an eigenvector of S If S is proportional to the iden-
O O

tity matrix (which occurs in the case where there are three mutually orthogonal

reference vectors with equal weights) this condition will always be satisfied.

For the case of Magsat the eigenvalues of S are nondegenerate and the prob-
o

ability of _ being an eigenvector of S is much reduced.
o

It might be pointed out that even in those cases where no overflow occurs at

0 = 17 the accuracy of the method will still be poor very near 0 = rr since much

information is lost in the cancellation of large nearly equal numbers.

This algorithm has been tested extensively for the Magsat sensor configuration

with k calculated from one iteration of the Newton-Raphson method. Over-max

flows were almost eliminated using the methods just discussed. It was found

for all choices of the true axis of rotation that the computation error was on

the order of 10 -15 radians (_ 2 x 10 -10 arc-seconds) for 0 <0true <179.5 de-

grees . Thereafter, for each decade decrease in Ivr - 0true t the computa-

tional error of the solution increased by one decade. This is the expected

behavior for a purely truncational error. This law was ,found to hold until the

value t?r- 0 [ "_10 -15 , beyond which 177- 0
true true t is essentially truncated
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to zero. The error becomes greater than 1 arc-second for ly _ etruei _ 10-11 .

Taking 2 arc-seconds as the limit of acceptable computational error for the

Magsat mission (attitude accuracy requirement = 20 arc-seconds) and noting

that the attitude will be computed four times per second during the Magsat

mission, it can then be expected that one unacceptable attitude computation

will be encountered every 50,000 years. This is significantly larger than the

estimated Magsat mission lifetime of from four to eight months. During the

lifetime of the Magsat mission it is, in fact, expected that no more than one

attitude computation will have a computational error larger than 10 -4 arc-

seconds. Overflows due to the vanishing of 72 +_-"Xq2 should occur no more

than once in 1020 years. No alternative computational methods (such as those

described below) are planned for Magsat.

The logical flow of the calculation of the optimal quaternion is given in Fig-

ure 6-1. The subroutine which performs these operations is called QUEST

(for "quaternion estimator").

Cases may nonetheless arise in other missions when itis necessary to avoid

the singularity at e = 77. This might happen ifitwere necessary to work in

single precision or implement the algorithm for an onboard processor whose

words have even fewer bits. In this case itmay be noted that if the angle of

rotation is greater than y/2 , then the optimal rotation can be expressed as

a rotation through vf about one of the coordinate axes followed by a rotation

through an angle less than rr/2. A rotation through ?rabout one of the coor-

dinate axes will only change the sign of two of the components of each reference

vector. The quaternion _ = (Pl' P2' P3' P4 )T of the rotation transforming the

new reference vectors V! to the observation vectors W. is related very
I I
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POLYNOMIAL
FOR k

A A

Z'= _a.W. X V.
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Figure 6-1. Logical •Flow for the Computation of the

Optimal Quaternion (I of 2)
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Figure 6-io Logical Flow for the Computation of the

Optimal Quaternion (2 of 2)
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simply to the desired quaternion _ = (ql' q2' q3' q4 )T for the total rotation.

The results are as follows

®

o

o

It might be pointed out as a final remark that

180-degree rotation about x-axis

/% /% /% /% T

V:
I = (Vtx' -Viy' - Viz)

ql=P4 ' q2 =-p3 ' q3 =p2 ' q4 =-pl

180-degree rotation about y-axis

,'% ]%. /k /%

V!= V. ,-
1 (-Vix' ly Viz)

ql=P3 ' q2 =p4 ' q3 =-pl ' q4 =-p2

180-degree rotation about z-axis

/% ,_. /% /%

V!t = (-V.Lx, -Viy' Viz)

ql =-P2 ' q2 = Pl ' q3 = P4 ' q4 = -P3

)v
max

has the value

g*l (6-25)

where R is the optimal rotation. Thus, if the "noise" in the observation
opt

(or reference) vectors is known to have an amplitude ¢ , any significant devia-
2

tion of 1 - _ from c would indicate poor input data, for example, the
max

misidentification of a star.
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i ¸¸ SECTION 7 - SUMMARY

This section summarizes the analysis for the attitude computation algorithm

proposed for the Magsat mission fine attitude determination system.

A fast and accurate method has been developed for computing an optimal rota-

tion, Rop t, which carries asetof n reference vectors V 1 , ..., V , inton

a set of n observation vectors W 1 , ..., W . This optimal rotation mini-n

mizes a weighted square loss function

where

B

>, - 4 ..., (7-2)

and

(7 -3)

It is assumed also that at least two of the a. are nonvanishing and the corre-
i

sponding reference vectors are not parallel (or antiparMlel). If the W. , i =
1

1, °.., n , are the representations of the V. , i = 1, ..., n , in the spacecraft
1

body system, then Rop t is the optimal estimate of the spacecraft attitude in
A

the reference frame of the V i . The method presented here is based on the

q-method of Davenport (References 1 and 2).
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The rotation matrix R is related to the quaternion representation of the rota-

tion, _ = (ql' q2' q3' q4)T_ acc°rding to

t[) -
I. +,".+&".&'++,.

z(l++s-l,l+)

(7-4)

In terms of _, the loss function is

(7-5)

with

(7-6)

The 4 x 4 matrix K has the form

where

H + A .r- ^ .aT,

Z%.+
(7-8)

i_-= _ 7",.S' (7-9)
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(7-zo)

The optimal quaternion which minimizes _(_) is given by

if-z1)

with

(7-12)

where k is the largest eigenvalue of K.

¥-
(7-13)

is the Gibbs vector of the rotation.

If an exact simultaneous rotation of the

k has the value unity. Otherwise
max

weighted sum square of the residuals

/% A

V. into the W. is possible, then
1 1

X is smaller than unity by the
n2ax

=, - (7-14)
$=s

/% /%

The magnitude of the residuals (W.z - Ropt Vi) will be of the order of the error

(in raclian measure) of the spacecraft sensors determining the observation

vector. (The error in the reference vectors is assumed to be much smaller).
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Thus, )'max is smaller than unity by half the mean sum square of the observa-

tion errors (in radians).

Ifthe value

is substituted in Equation (7-12) an estimate is obtained for the quaternion

which is in error by an amount of the same order as the mean sum square of

the sensor errors.

)'max ' Y and _ can be determined to arbitrarily high accuracy as follows:

one defines the quantities

(7-16)

= de, S
(7-17)

(7-19)

(7-20)

Then k is a root of
max
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with

(7-22)

b= Z
(7-23)

(7 -24)

(7-25)

which can be solved to arbitrarily high accuracy using the Newton-Raphson

emethod and a starting value kma x 1 For observation errors less than one

degree the Limiting accuracy of a double-precision word in IBM FORTRAN will

be attained after two iterations. One iteration will suffice for observation

errors less than 10 arc-seconds.

In terms of the above, the Gibbs vector may be written as

with

(7-27)

The quaternion may likewise be written as
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This last formula is more accurate than obtaining _ using Equation (7-11) as

an intermediate step.

The quantity (2 + I-_] 2) will vanish when the angle of rotation is 1r and the

axis of rotation is an eigenvector of S with
O

t'ae
(7-29)

A procedure was presented at the end of Section 6, whereby this situation can

always be avoided. When this is done the accuracy of the method is very nearly

the accuracy with which real constants can be represented in the computer.

For Magsat the likelihood of encountering overflows or even large computational

errors is sufficiently small that these additional procedures need not be imple-

mented.
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