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. ABSTRACT

This baf)er d‘eSEribes data processing algorithms for the LMSC/HI

: Sbace Precision Attitude Reference System (SPARS), emphasizing
" the application of discrele Kalmaan filter theory to the processing
- of data from the strapdown gyros and passive star sensors, The

descriptiors are at a level of detail that reflects refinement in digi-
tal simulation and real time system test. A three degree-cf-free-
dom dxgn"{. clmulatxon which includes the SPARS equations along
with a "truth model" and dynamic error sources, is described. Re-~
sults of simulation runs are presented which shpw sensitivity of
attitude reference performance to star sensor geometry, measure-
ment errors and Jetectability, to gyro drift and to computational
errors. These results show that errors from the dynamic error
sources are well within the SPARS requirements, Resulis of a
series of simulation runs to determine convergence of the attitude
error from large initial values (acquisition) are presented, Star
sensor design paraimeters are shown to have a significant effect

on convergence time. The paper ccncludes with a summary of
computational requirements, showing that the SPARS algorithm

can be implemented in a typical modern aerospace computer,

INTRODUCTION

The SPARS algorithms represent a new ap-
plication of recursive filtering to strapdown
sensor data for precise determination of satellite
attitude. Thisg paper presents a detailed descrip-
tion of these algorithms in the form they wouldbe
used in an orbiting vehicle with an on-board digi-
tal computer. An all-digital simulation, with
which these algorithms have been analyzed and
refined, is presented along with some simulation
results. As described in more detail in Ref. 1,
these results have been verified, using the SPARS
algerithms in a slightly modified form, in a
dynamic system laboratory test, which consisted
of the real time determination of rate table atti-
tude to high precision,

The coming of age of the righ speed digital
flight computer permits a transference of certain
functions from the hardware to the software with

~a consequent overall reduction in hardware com-
- plexity and improveraent in system performance,

In SPARS, the strapdown star sensors provide
diseretes, and the function of relating these to
one another {o bound the drift of the strapdown
gyro data is performed in the computer. By
providing near-instantaneous sensing of vehicle
non-linear dynamics, the gyros create a refer-
ence irajectory about which attitude errors be-
have linearly, thus permitting use of linear re-
cursive filtering without torque modeling. The
recursive approach maintains a current and ac-
curate attitude reference withoat the difficulties
inherent in batch processing of large qaantxtxes
of dat”

e concept of applying recursive tiltering
to attitude determination wes first propesed in
the SPARS Phase O proposal in early 1967 (Ref, 2).
In support of the rreposal, a single degree-of-
freedom simulation was performed. Simulation

1'I‘he conception of the algorithms and the generation of the simulation program was Honeywell-
sponsored in early 1967, The simulation analysis effort was carried -ut urider subcontract
24-16582 to Lockheed Missiles and Space Company. *
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- was expanded to a complete three degree-of-
freedom simulation (described herein) in the
mid-1967 period prior to commencement of the
Phase O SPARS contract in Decemter, 1967,
The majority of the simulation effort was car-
ried out under the Phase O contract (Ref. 3).

. "Most of the algorithm details, including the
portions considered to be original, were devel-
oped ir. the mid-1867 time frame. The excep-

_ iion was the extension of the recursive approach

- to acquisition4, an approach which was taken in
Phase O after initial attempts to use a discrete
batch processing approach had yielded poor re-
sults. Three noteworthy innovations devisedfor

the SPARS application and incorporated into these™

algorithms are: 1) the particular use in the
measurement calculation of the dot product be-
tween the star sensor detector slit normal and
.. the'star vector, 2) the use of the dot product
. variance, computed in the weighting function
“calculation, as a tolerance factor in the decision
- making process for star identification, and 3)
_ the formulation of the noig’ lerm in the covari-
‘ance matrix propagation w g test-verified
white noise drift. S ST :

*" These and the other SPARS algorithme,
such as star catalog sorting, gyro rate calcu-
lation and integration, and derivations of the
geometry matrix and transition matrix equations,
are presented in a level of detail that is meant
to convey the great depth to which algorithm de-
velopment has progressed in the SPARS simula-
tion and test program. The descriptions of the
gimulation program and simulation results are
not presented in the same level of detail. The
reader is referred to Ref. 3 for an in-depth
treatment of these subjects.

~ SENSOR CONCELPT

The SPARS uses two complementing forms
of sensor data; gyro data to prcovide an essen-
tially econtinuous attitude reference, and star
sensor data to bound the long term gyro drift.
Strapped down mechanizations of both types of
sensors are used. A brief description of these
sensors follows; more detailed descriptions ar=
given in Refs. 1 and 4.

The inertial referernce assembly (IRA), de-
scribed in Ref. 4, uses three single degree-of-
freedom rate integrating gyros mounted with
their input axes forming a nominally orthogonat
triad. A ternary pulse rebalance mode is used
to maintain good scale factor stability and mini-
mize random drift, The TRA outputs are three
asynchronous pulse trains, each pulse repre-
senting a fixed increment of the integral ol rate
experienced by the vehicle about the respective
gyro input axis. Each pulse train is summed in
a separate precounter, the contents of which are
periodically strobed into a digital computer for

solution of attitude change over the sample period,

2Suggested b'_y Dr. J. L. Lemay
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T'he relatively benign angular motion of the
satellite znables this solution to he accomplished
at a relatively low frequency without the usual
concern for the "'coning' considerations of
strapdown attitude computations.

The two identical SPARS. star sensors‘, Valso‘

described in detail in Ref. 2, each utilizes medi-
um field-of-view {« 10°) concentric optics to :
image a portion of the celestial sphere on a
detector surface, The detector consists of a .
number of photosensitive elements, hereinafter
denoted as slits, arranged in a spoke-like array
to take advantage of the relative motion of the
star field caused by the nominal pitch motion of
the Earth-stabilized vehicle. Fig. 1 shows the
arrangement of the star sensor viewing direc-
tions and slit orientations with respect to the
vehicle. The values of 8 and vy can be varied
over a wide range to accommodate vehicle
mounting constraints without significantly af-
fecting attitude reference performance,

The basic star sensor measurement, re-
ferred to as a transit, is the epoch at which the
image of a star crosses one of the photo-sensi-

* tive slits. This generates a current pulsewhich
starts a counter that is terminated at the next

IRA precounter sampling time. The contents of
the star sensor counter are strobed into the digi-
tal computer along with the IRA data. These data
allow correciion of the attitude state at the pre-
cise instant that the transit occurred.

The orientations of the star sensor slits are
precisely measured in a preflight calibration. A
single transit provides informaticn of vehicle
orientation vith respect to the measured star.
Coupled with the knowledge of star celestial co-
ordinates, a transit provides partial inforrnation
of vehicle inertial attitude, Muliiple transits on
different stars and on slits of varying angle with
respect to vehicle motion provide the necessary
data for compiete attitude update,
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-into two major categories: gyro data processing " per sample is roughly given by the product of
and star sengor data processing, These take the accumulated angle {ntegrals (in radians)
.- place at different frequencies; the gyro data is about two input axes over a sampling interval,
processed at a constant frequency of several times For nominal body rates and sampling intérvals
" per second, and the star sensor data is proccssed in the SPARS application, the commutation - S
" at irregular intervals as determined by star tran- error will introduce an equivalent drift into the
sits. Fig. 2 shows a block diagram with these body attitude solution that is less than one tenth

- Gyro Data Processing

=
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Y

" functions further subdivided,

_in the lower half of Fig. 2,

' pulses be denoted by Ag; where i = x, Yy, z

=" The commutation error occurs only when-
,there are simultaneous rates about two or more

DATA PROCESSING CCNCEPT ' ;
.Tﬁe SPARS data ‘prdc'essing cun be dividedm 2 axes. The magnitude of a typical error term

the random gyro drift. “However, for worst case
body rates, the drift becomes sufficiently large
such that a correction is desirable. -

. After Prdcéssing in the ﬁrééouhférs, the IRA . A s'tréigh.ff‘orﬁ'ai;d method of correction is

gyro data is input to the computer for rate de- "~ provided by fitting a polynomial to successive
rivation, gyro bias ccmpensation, gyro misalign- values of a Af;, then differentiating that function
ment correction, and attitude (direction cosine) to obtain rate at the end points, This approach

solution, Gyro data processing blocks are those has heen taken, using a second order curve fit
L IS “(Ref.5 ). An equivalent result was obtained in

Lo N B R P ol 6. The expression resulting for derived

Rate Derivation -- Let the sum of the gyro ‘" gyro rate ‘—".g is (from Ref.5 ): g

These are measures of the integrals of rate about zt ) A.'G"(t' ) 1
the resnective gyro input axes over the sampling itk " i k-l.:’ 2at

interval, A first order approximation for rate

would yield Wg; = AG;/At and the so-called com- where A9;(ty) is the précounter sum over ‘he
mutation error, which arises from the fact that . last sampling interval, Ai, for the ith gyro
angies are not vectors and thus do not commute. (i =x,y, or z)and AB;(ty 1) is the sum over the
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previous sampling interval for that same gyro.
Equation (1) yields a second-order estimate of
the gyro sensed rates at the end of the most re-
cent sampling interval (tk).

AV

Rates at the beginning of that interval are
given by T .

i A L .
Both wg. (t) ) and w, (ti.1) are used in the body
attitud§ s(l)iution scribed in a later paragraph.

" Only wgj(ty)is used for the rate output.

‘Gyro Non-orthogonality Correctics -- The
actual alignments of the gyro inpur axes are not
cricital, but must be 1neasured and compensated

" for accurately. . The equation for the compensa- -

tion is: =

- and

[Tynl isa3x 3 matrix,

generally non-orthogonal, which is determined
in a pre-flight calibration of the IRA, The re-
sultant orthogonal rate vectors w,(tk) and &g x
(tx-1) represent the measured rate components
along the same three axes to which the star

sensor photosensitive elements are referenced.

. drift compensation vector,
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Gyro Driit Compensation -- Estimated ve-
hicle Tates, &, are obtained by adding the gyro
Bg, to the orthcgoual

measured rates

-— — -t

w(tk) = wo(tk) + Bg (4)
and

w(tk_l) = uo(tk_ 1) + Bg (5)
which implies that the components of B are cor-
rection terms for drift about the orthog%nal body
reference axes rather than the gyro input axes.
Since these corrections are for constant drift,
there is no need to apply the compensation about
the_gyro input axes. Furthermore, the elements
of By are updated periodically from star sights,
which are all related to the orthogonal body ref-
erence axes. Use of gyro drift corrections in
these same axes saves one vitra coordinate trans-
formation, The updating of By is described in a
later paragraph,

- Body Attitude Solution -- There are inany
types of parameters which can be used to imple-
ment the numerical soluticns of attitude from

‘gyro-measured rates,

r49i<tk)+ a0t 155 @)

_tion time,
- been chosen for the SPARS body attitude solution.

Among these are Euler
angles, direction cosines and symmetrical-
Euler parameters (a form of quaternions), Euler
angles are undesirable in that a numerical solu-
tior. of equations using them involves time-con-~
suming trigonometric functions, Direction co-

. +s8ines involve only multiplications and additions
“-in the solution, but there are nine equations .
- which must be solved. Symmetrical Euler param- -

eters hold some advantages in that there are only
four equations to be solved, again involving only
multiplications and additions, However, since
the attitude output of SPARS is to be used in
coordinate transformations for Earth targeting,

direction cosines will be necessary in any case,

This would require a special transformation from
the four-pararneter set to direction cosines, tak-
ing extra computer storage as well as computa-
Therefore, direction cosines have

T‘he_e:quétkions to be solved éré:

RS tx .
 = )‘n(t_k—l) +[ [»w:u -wyvn]dt

=t )

Vn(tk) : Vn(tk—l) +f
-1

where A, By, v, denote direction cosines between
the body x, y, z axes, respeciively, and the nth
inertial axis (n = 1, 2, 3). The times tyx and t -1
denote present and last previous times at whic

the gyro precounters were sampled,

Equations (6) are solved numerically by a second
order improved Euler integration scheme, The’
rates w(t|c-1) aad w(ty) from Eqs. (4) and (5) rep-
resent the retes at the beginning and the end of
the integration interval, and are substituted into
Eq. (6) for the i (i =x, y, z)as appropriate for
the second order solution,

The boay attitude solution is incremental in
nature rather than absolute, and as such the gyro
precounters must be sampled and processed with-
out losing any data. This implies use of an in-
terrupt in interfacing the gyro precounters with
the computer,

The nine direction cosines of Eqs. {€) re-
ceive their initial conditions from and are updated
periodically by the star sights, which bound the
errors in attitude resulting from random gyro
drift and other lesser error sources. Among
these lesseir error sources are the affects of
computatio.sal roundoff and truncation as well as
the commutativity effect méntioned carlier. The
computational errors will cause the direction
cosines (hereinafter denoted collectively as T

:
the 3 x 3 transformation from inertial to bpdyBI

+f [wxvn—wzxn]dt (6‘) o

vx!‘v‘

i

3,
e
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cdordinates; to become non-orthogonal,

" of this paper, .

This
is corrected as part or the attitude updating
process once per siar sight, as described in a

O later paragraph. The overall effects of compu-

tational errors are described in a later portion

Star Sensor Data Processing

The processing ~f data from the star -
sensor is shown in the upper half of Fig. 2.
Based on the input star sensor counter value,
the attitude matrix is interpolated back to the
gtar transit time, the star involved in the tran-
sit is identified, a dot product is computed using
abberation corrected star catalog data, and the
attitude and gyro bias states are corrected using
a Kalman filter-generated weighting function,

Interpretation of Star Sensor Inrut Data -~
As described earlier, a star sensor transit pulse

- starts a counter in the interface and tilming unit
- which is terminated at the next gyro gsampling

instant. The contents of the counter, termed the
interpolation interval, is input to the computer
along with the gyro data, Alsc input to the
computer at the same time is a coded vord in-
‘dicating which slit was involved in the trznsit,
This latter information is not actually neces-
sary during steady state operation when the
attitude uncertainty is swiliziently small to
permit slit identification in the software., How-
ever, information is necessary for the acqui-
sition process from large initial attitude
uncertainties, as will oe explained later,

The interpolation interval is added to the
star sensor time delay, which is predetermined
from a star sensor calibration, aud the sum ‘s
used to define the limits in Eqs, (6) for an inte-
gration of the attitude matrix backward from tk
to the time of transit, Note that this calcu-~
lation is performed orily when a transit has
occurred within the last gyro sampling interval,
which is seldom, relative to frequency of
solutions of Eqs. (6),

Star Catalog and Sorting Computation --
Before the attifude matrix at transit {ime can
be used to compute the star measurement, the
star involved in the transit must be identified,

The on-board star catalog consisis of the
right ascension, a¢, and ceclination, Oc, in
fixed inertial coordinates, of all stars to be
utilized in a given mission. It is conceivable
that this catalog could include only a segment
of the celestial sphere covering a "swath" cqual
to the sensor field of view plus allowances for
limit eycle excursions and orbital precession.
However, this implies prior knowledge of the
orbit orientation in inertial space, which could
he changed considerably due to launch delays.,

Rather than require changes in the star
catalog right up to the time of launch, it is
considered desirable to pay the small penalty
in ccmputer storage necessary to store coordi-
netes of all detectable stars in the celestial
sphere, '

' inertial cocrdinates. It is defined as

equations for o® and 6° are:

For convenience in sorting, a special,
temporary star catalog is periodically created
in the computer from the inertial catalog des-
cribed above, It is an orbit-oriented catalog,

+- for which right ascension, «© , and declination,

80 , with respect to a nominal orbit plane, are
compured for each star, The computation uses
a trane{ormation, -TQp, relating orbital to

-cos i sin f}) cos i cos ﬂo- ‘}sin i ]
TOI =} =gin i sin Qo sin i, ‘c?s ﬂo ’-‘c‘cts »io (f{)’,.
-'-Sh'.x % y

~cos 2 S0
i © o

where i, and-fl, are the nominal orbit inclin- -

ation and nodal longitude, respectively., The

o e 0 1o
o arctan (u S/x s),
and Seniyo A
5 = arctan ——o "
o T M/
l-(v:)z L
where I R A
z° cos a,_ cos §
‘s c c
° = T gin o cos 6
Bg 01 c c
o
v sin OC

Only those stars which are within a certain
range of declinations are put in the temporary
catalog. The range of declinations ig defined by
the sensor field of view plus an allowance for
limit cycle excursions. Those within the range
form a "swath" of stars for which only the right
ascension and an identification nurnber (refe.ring
to the permanent inertial catalog) are stored,

A schematic of a swath in a portion of the ce~
lestial sphere is shown in Fig, 3. Only one
such swath is needed if the two staxr sensor tele-
scopes are mounted on the same side of the
vehicle at the same angle from the orbital plane,
The swath must be updated periodically to ac-
count for orbital precession,

In addition to the above once per day sorting
on declinaticn, the number of candidate stars
can be further reduced at the time of transit by
sorting on right ascension. This is done by
computing the right ascensions, gy , and
asg , of both star sensor telescope optical anes
in the orbit coordinate frame, then retaimng for
star identification, only those stars whose «©
are within a range of one of these two values
(see Fig. 3)., The sensor right ascensions in
the orbit frame are;

@ = arctan

[o] o
v Losl/“ LOSI) (D

g

T
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w1 ‘) T O,B (13)
p. c = t } LOS
- o v
Y Los A
and where LOSEf md LOSZ are the two veciors
defining the star sensor telescope optical axes in

) . the body rzference frame; thcse are stored con-
¥ gtants, The trans‘ormanon TRi {tm), is the
: body attitude solution interpolated back to the
time of measured transit,

Equdt‘ons {11) and (12) are used, together
with the temporary star catalog (stored in order
of increasing o© to simplify gorting), to deter-
mine those stars which are within the candidate
range for transit, Each such ster is corrected
for abberation and used in a final star
identification,

Aberration Correction ~~ Correction for
abberation of the apparent star positions must
"be made for both vehicle velocity around the Earth
: and Earth velocity around the Sun, The cor-
i rections are necessary because the effect of
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“-the Earth ar

" where V Vea
" the vehicle a%ound the Earth and Xp

‘these velocities causes shifts in apparent star

. position by several seconds of arc over an orbit
: and/or mission.

Only rough estlmates of vehicle and Eatth
,veloc1ty are needed to make adequate aberration

- corrections, 'To obtain the components of Earth
" velocity around the Sun, the value of time, t, and

initial Earth angle in the Ecliptic, ¢r, (for

. t = 0) are required. Earth velocity is then )
roughly : Tl

°°5(8760" * ¢E}
(cos iE) sin 8760t ¥ ¢E) (14)

2
(5_#“ 8760“ ¢E)

where - VE is the average lmear ve10c1ty of
&md the Sun, i{m is the inclination
of the ellptlc to the equator, and t is'in hours.

The vehlcle velocity, Vs , may be promded
from an external computation to SPARS, or it
may be estimated from body attitude as follows:

A £ I)V (15).
8 B savg . /

is an average lineag vFlocny of
is the
transpose of the first row in the body attitude
matrix , Tgr l.e., A1, A2, and A3 from I:.qs.
(6). Equatlon (15) is valid when the vehicle ig
Earth-stabilized in a near-circular orbit,

: The aberration correction for both the above
velocities is a simple vector addition

cos a ) €08 Gck
=g flsina cosb, | (16)
sin & ok

where §1{< is the apparent position of the l\ 1 star
in the Cartesian inertial frame, ¢ is the speed of
light, and the terms in the brackets are the vec-
tor components of the kth star in inertial co-
ordinates as calculated from the stored right
ascention ack and declination &ck. The result
from Eq. (16) is not a unit vector; however, the
deviation is so small (on the order of one part

in 109) that normalization of SkI is not necessary.

For each star that is identified as a transit
candidate using the temporary, orbit oriented
star catalog, the correction of Eq. (16) is made
prior to final star identification. The identifi-
cation number stored in the temporary catalog
prowdes the means for referring back to the
inertial o, and 6o for use in Eq. (16).

Dot Product Computation and Star

Identification ~-- The parameter used in final




: idexitiﬁcation of the st

ar involved in the transit
is the value of the star sensor measurement;

" i.e., the dot product between the star vector
~and thewstar sensor detector glit normal,. .

Intersect one of the star sensor photodetector

: - slits. As shown in Fig. 4, the photodetectors
" »in-either teleacope consist of six slits across

the field of view, It is assumed thai ear.n de~-
tector slit defines a single plane with tke tele~

: 8cope optical axis, The jih glit plane is defined
. by a unit normal vector » I'N; . Deviations
. along any slit from the planar agsumption rep-

resenis one of the error sources in star measure=

- . ments,” Part of this error can be removed with
¢.-appropriate calibration and software.,

- .:When a star vécfor‘ir.xtersects a slit plane,

o the dot product of the star vector and the nor-
% .u:-mal to that plane should be zero. That is,

" por = Cam

Fig; 4. Star-Telescope Geometry
at Time of Transit

3Six slits are used in SPARS. A larger num-~
ber of slits may be used with a correspondingly
larger number of defining vectors,

: - body coordinates, whereas the star vector, -
" in inertial coordinates. In order to evaluate

“For a transit to occur, a star vector must - .

where the tm incicates that the vspec.iauy -
.- the solutions of Eq, 18,

.‘and is described in a later paragraph, DOT for

yield a |DOT | less than the tolerance (which is

The skt normal vector, 1N;, Is fixed in )
: » is fixed (except for aberration correcticns)

DOT, on» of these vectors must be transformed
into the frame of the other. The transformation
involved is that resulting from the body attitude
solution, TBI. If we choose to resolve the
star vector into body coordinates, Eq. (17) can
be written as: ’ AR

v:i'.trDO'rfv‘.’TNB ! g [iﬁx‘ix;?l_;gkx( - ae .v

evaluated TRy at the transit time is used in

-Tl}e“prroc':édure for ﬂndiﬁg the\star éausing

the: transit is to evaluate DOT for each candidate, -
using the TN; for the slit identified by the input

.identification’word, and crmpare the result with
‘a preset threshold or tolerance, The latter isg
"a function of the system performance level,
determined by the Kalman filtering calculations,

the correct star should be less than the toier~
ance; all other DOTS should be larger, - :

If moce than one of the star candidates

extremely unlikely during steady state operation
when the tolerance level is very small), the
measurement is declared invalid and nu state
corrections a2re made, Similarly, if none of the
candidates yirld a |DOT| les than the tolerance
(as would be tne case when a Stur that is not in
the catalog has caused the transit}, the meszasure=~
ment is disregarded. This technique eliminates
the probability that uncatalogued stars, illumin-
ated dust particles, or ambiguous transits can
cause improper state corrections to be made,
Furthermore, it enables exercise of choice in
selecting the on-board star catalog, in that all
detectable stars need not be catalogued. In
regions of the sky where stars are more closely
spaced, only selected stars would be catalogued,
which reduces computer storage without sacri-

ficing overall system performance.

When a single valid transit candidate has
been identified, the value of DOT for that star
is used for the state correction. Note that for
a perfect star sensor measurement DOT repre-
sents the sine of the angle which is the projection
of the system afttitude error onto a plane parallel
to the star vector and perpendicular to the slit
plane. Since DOT is small at a transit caley-
lation, a.first order approximation can be made
equating DOT to the value of the above error
angle in radians, This is the quantity to be
multiplied by the Kalman welghting vector for
state correction,

State Correction -- The SPARS data
processing concept makes use of linear recursive
filtering theory to correct state. Since the basic
SPARS equations of attitude are non-~linear, they
must be linearized to apply this theory. The




- approach is valld if the system behaves linearly -

- when perturbed about the non-linear solution,
obtained numerically in the on~board computer,
This {8 true in the SPARS case,

Although the non-linear solution of attitude
utilizes direction cosines, it is undeszirable to
‘linearize these equations to define state, They
are nine parameters, and are not independent,
Instead, three independent Euler angles are
uged, along with the three gyro bias correction
terms, as the variables from _which linearized
state is derived,. The state, X, is defined as

(667
5o

- 'where the top three elements are Unearized
* Euler angles and the bottom three are linearized

gyro bias corrections, The incremental cor-
rection to state is given by

74X = R«DOT) -

 where K is a six-clement weighting ‘)ectox‘, the
generation of which s described in a later
paragraph, .

In order to apply this state correction after

a star transit, the direction cosines of the body
attitude golution raust first be converted to
Euler angles, The corrections of Eq. (20), are
then added, the first three elements of AX to

i the Euler angles, and the last three to the gyro

~ biss correction terms By, By, and B, {[used
in Egs. (4) and (5)1 Although this conversion
to and from Euler angles would seem to require
‘extra computation time as well ag storage rela-
tive to performing all computations with Euler
angles, overall time is actually reduced be-
cause the high speed body attitude solution
utilizes direction cosines, which are more ef-
ficient, as discussed in a previous paragraph,
Furthermore, the procedure automatically
orthogonalizes the direction cosine matrix, thus
no special function is needed for this purpose,

The equations used to perform the trans-
formations between directicn cosines and Xuler
angles depend on the Euler angle sequence. To
avold singularities involved in computing Euler
angles frown direction cosines, the szqguence ig
defined relative to the orbit-oriented coordinate
framme, Use of a pitch-roll-yaw (6-?-4/) se-
quence then avoids the '"gimbal lock' problem
in that the roll and yaw angles are known to not
exceed a few degrees,
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.- related to the direction cosines by

. elements of

(20)_ B

"The Euler angles for this gequence are

tosd cuad o " coed aine )
ey alng sine  Sweons T coa:' .
-xtegy cons oln# atng l [Tor)

T coas cosp 4

Tal? * [ocongemg aing oMb evar S0 Y (21)

coa g sing -sing

where [TQ1] is the inertial-to;orbit transfor-
matior. definec by Eq, (7) once per day., From
“tids are defined the Euler anglesg

T oy A

¢ = . arctan S
R Vl,'_(\.’z )

;'»a.'x:étan‘ ('vlo/ v3°) -

: :‘,:>. "‘,‘or'o

Y = arctan ("2 leg )

‘where "\Zo"uzo, vlo, vzo , a.nAd v3° are

K V . ; . - T N N
: [TBO(t)] - [TBI(t)] {Tm]

The computational functions of star catalog
sorting, aberration correction, and tiansit time
prediction may take as long as one or two gyro
precounter sampling intervals to complete, It is
assumed that the linear coirection to state can
be made at that time rather than at the time of
measurement with negligible error. The last
golution of Tpgy (t) 1is thus used in Eqgs., (23)
and (22) to computé Euler angles, After the
corrections to state are applied by adding the
elements of from Eq. (20) to the appropriate
Euler angles and gyro bias compypensation termas,

(23)

" the conversion back to direction cosines is made,

using Eq. (21), to obtain the updated attitude at
the game time, tx . This becomes the new initial
condition for the body attitude solution, Eq. (6].

Weighting Function Generation -- As des-
cribed in the preceding section, the SPARS data
proc:ssing concept is an application of linear
recursive estimation theory, This theory is
well known and documented in the literature;
Ref, 7 gives an over ~all view with pertinent
comments that will be referenced herein,

The egsence of linear es‘imation theory is
the solution of a (six element) weighting vector,
K, which provides a means for correcting state
in real time that minimizes the expectation of
error in a least squares sense, The weighting
function is computed from a 6 x 6 covariance

matrix, P, which is a running estimate of sys-

tem error statistigs. As dé)._‘iV'ed in Ref, 7, the
computation is B




) to be:

%, from one time, tx-1, to the next,

- where H . ig a g;legmeﬁ;y.fxgléirix oipartia). -
- derivativeg re}ating perturbations in state to

estimated measurement covariance matrix, For

. the SPARY cage, the measurement lg g BCasar,

~hence R ig the variance of the gtap sensor un-
ty in engular unitg, Eq. (24) 18 golveq

once Per star trangit ang uged in the gtate cor-

rection, The Eeometry matrix (a } x g row
vector in thig case), is derived in Appendix 4

The covariance matrix, P, in Eq. (24) is time
variant, In the SPARS application, itg compu-
tation can be discrete (see Ref, 7) since the
star measurements oceur relatively intrequently
with respect to the high speed gsolution of Etate,
In the discrete computation, the covariance
metrix, P, ig Propagated from the time of one
measurement to the next by means of g § x6
transition matrix, § (t; tk-1), which ig defined
as that matrix which relates linearized state,

te . by
X(tk) = [@(tk; tk-l)J X (tk-l) . (26)
The Propagation equation is:
Plh) = 5 (s b ) P (e )g Tltan,_ )+ Ult) (a9

where f_; ang Yy are times of the previous
and present stap transits, respectively, and
U(ty) iz a matrix Tepresenting the contributiong
to system eérrors, between measurements. of
'iInmodeled or inaccurately modeled system
dynamlcs, i,e., plant noise, Included in the
latter are computational €rrors, and most im-

. portantly, random gyro drifts,

The transition matrix, ¢ (e tye.)), i
obtained by numerjcal Integration of the equation

(%; [& [t tk-lj] = [F(t)} [w(t; tk_])} (28)

Since [F] ig a matrix of time varying coefficientg
from the body attitude solution, thig integration
must take place in parallel with the solution of
Eq. (6), The matrix [F] is derived in Appendix
B, and is as follows:

. oyaing ROy - g atng e cong
(P Aty + q oy 0 cand oy GIE

[ ° O lpalrgoom  cops sl o]
PR = HQ comd s paing) sce?y 0 (p oM QAN M0pne  cosptans 1

0 ° ° ° ° v (29)
L] v ° ° o 0 .
] o e 0 ° o °

;M
4 s

vy d, v22, and v33 are in units of ('drift)Q/HZ.

. Euler angles rela ing bo
" cooxdinate frame. The initial condition to Eq,
(29) 18 ¢ (tg.y; tk-1} = 7 (unity matrix), A
rectangular integration algorithm for solution of

» Tgy, Tor, §k1) (25)

where p and ¢, g, W are

2y, oy, T suéz,

Eq. (28) 18 adequate, sinne precigion ig not
critical, " The elements siny

Tpi(t) [see Eq. (21)] by einiple arithmetic oper-
ations without inverse trigqnomet*_ricvaunctiuna.

- At the time of & valid transit, 1qs. (27),
. {25), and (24) are golved in that order, The -
o weighting vector, K, is used to eyply a state
. correction according to Eq.. (20),

equation

= P-KHP

mu‘st also bz soived to update the covariance :
matrix for error improvement resulting from the
The result of this caleculation

state correction, .
ig stored for propagation ahead by Eq. (27)
the time of the next transit, - . L

Determination of the "Noise Matrix," yft)
The matrix Ultyx) in Eq. 27) must be somewhat
empirical inasmuch as it accounts for both known

However,
if the assumption ig made that the unknown plant

(Btatistically) and unknown plant noige,

noise is small compared to the known. then
2pproximate form for U(ty) can be derived,

this case, randorm gyro drift is the dominant -
Assuming this to be 5 white
noise process (evidence of thig from test data ig

known plant noige.

given in a later paragraph) the form of U jg
rived in Appendix C to be:

2
vy AtT 0 0
2
1] v, Atr 0
2
0 V3 ALI.
0 0

Ut ) =

0 0

3

0 0

© o o o
OOOOOO
© o o o

where vy 2, v22

FPWI = Fe) Py POF L (t)+ Q(t)

In place of Eqs. (27) and (28), where Q(t) is the

expected cuvariance of the noise V(t) in the

standard equation

LB - Fo R0+ S0

attitude to the orbital -

, 8ing, cosy, ete,

The additional

. V32 are the components of low
frequency gyro drift power spectral density4,

and At is the time since the last transit, Thig
form is approximate in that the assumptions of
constant pitch rate and zero roll and yaw rates

the :

at

an
In

de-

(31)

O © o o

0
[

(32)

{33)

t
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" That is, .

E [T vTin] = Qo 6(t-1)

for \thté noise, where ~6 is the Dirac delta
function, ) ‘s S

(34)

This approach is not taken in SPARS, pri-
marily because the solution of Eq. (32) is elightly
more complex than solving Eqs. (27) and (28),
and the performance obtained with the latter is
satisfactory. . . o R

Equation (31) must be augmented in pféctical

_application to account for the unknown plant noise

(e.g., computational errors), Experience in the
SPARS application has shown that use of the
other three diagonal terms is sufficient. These
are determined by empirical means.. Constant

- and time dependent terms have been tried with

aphroximately equivalent results.

C I TRUTH i
MODEL

SIMULATION AND MODELING

- The complexity and non-linearitles of the
SPARS problem necessitated the use of digital
simulation techniques for performarce studies.
Interrelationship of error sources required the
use of a single, comprehensive digital simula-
tion. As shown in Fig. 5, the simulation con-
sists of two main parts; a truth model, which
simulates vehicle and sensor dynamics, and the
SPARS algorithms. The latter are essentially
those equations and logic discussed in the pre-

*“vious sections and need no further explanation.

The remainder of this section describes the
truth model, i.e. the left-hand side of Fig. 5,
and the error processing techniques.

The major elements of the truth model are the
Star transit calculations, the attitude and
limit cycle solutions, and the sensor error
models., : :

S s e SPARS :
ST T B L ALGORITHMS
STAR - ___STARCOORDINATES STAR

R STAR COORDINAYES Eg;gm
<ENSAR STAR IDENTIFICATION caTALeS l CEOMLTRY
CEOMETR SLIT IDENTIFICATION -

[

A v | ATTITUDE STAR IDENT-
izgkpféitgci%f‘.xé?c”m TRUE TRANSIT TIME . MEASURED INTERPOLATION ATTITUGE AT IFICATION AND
‘ ) TRARSIT TIME ] 10 TRANSIT TRANSIT TIHE DOT PRGOUCT
TRANSIT TIMES i TIME CALCULATION
GYRO !
DRIFT i
VARiA ICE | DOT PRODUCT
STAR | GYRO BIAS ?IELCTU[RFSIIVVGE
GYRO A i}
| Xﬁ:‘:rcu TRUE DRIFT ig[ngsgon | CORRECTION AND STATE
“]cvete  (RATE MODEL MODEL CORRECTION

! ATTITUOE

sten § CORRECTION
TRANSIT |
VARIANCE |
: puise ]|

- H‘rjfruoe . GENERA- |MEASURED C,?B‘i%",?‘"“ Eg?rwne Bo0Y
SOLUTION MEXSURED RATES §3f”(}§§ ;HlsTauDE DERIVATION | ESTIMATED RATES | SOLUTION STTITUDE
L Suus
puLse |
WEIGHT |
TRUE ATTITYOE ] N ESTIMATED ATTITUDE

PrTiTups| ERROR
sULLLL
iERROR

|

STATISTICS
OPERATIONS

Fig, &. Three-Deg'x;ee-of-Freedom SPARS Simulation

Block Diagram
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" Star Transit Calculations

© A star transit prediction table is main-

. tained in the truth model for generatien of true
- transit times,

Each time one of the imaginary
leading edges (which are a fixed angular distance
ahead of the star sensors as shown in Fig. 6) -
passes a star, a linear prediction of transit

time is computed, using true rates and attitudes,
and entered into the table, When the predicted
transit time is within 150 seconds of computed
current time, the transit is re-predicted and

the table i{s updated. This is repeated 15
seconds before estimated transit and for every

. At thereafter until the transit occurs er until

the sensor passes by the star. Attitude is inter-
polated within the last At using a Newton-Raph-
son iteration on the dot product to define pre-
cisely the true transit time. The logic employing
the 150 and 15 second ranges was teveloped to
give accurate iteration near transii time yet

: minimize the number of time consuming iteration

between transits.

STAR
VECTOR

ornca
Axts

3 DOF Simulation Star Field
Geometry

Fig. 6,

The above calculations are done for each star
within transit range for each slit. At time of
transit, the slit identification is tagged for use
in algorithm calculations, and the star identifi -~
cation is tagged for informational print out only.

Whenever the rates change due to limit cycle
control, the predictions are no longer accurate
and the entire tabie of transit times are repre-
dicted. Note that the above logic applizs only to
the truth model; the SPARS algorithms do not
predict transits before they occur, buz respond
only arter a transit signal is received from one
of the star sensors.

Attitude and Limit Cycle Solution

The truth mode! implements a higt ly accu-

rate attitude solution by using a fourth order
Runge Kutta integration of true rate. This true

7 tude error calculation, and true rate generaiion,
A modified vehicle limit cycle model changex

attitude 1s used for star tr;anéitlgevnez;a‘tio»n, atti-

rate as though a reaction control jet fired when-
ever an attitude deadband limit i{s exceeded,
Unlike a true vehicle attitude controller, the
simulated jet firings continue until the lii it
cycle rate magnitude exceeds some minimum.
Thus, a worst case vehicle rate is simulated

Sensor Error bModels

The star sensor error model consists of-
fixed errors in the knowledge. of star sensor
geometry and detector slit orientations, simu-
lating calibration uncertainties, and random
errors to simulate variations in threshold tran-
sit time detection, non-planar slits, and nsise
in the-star sensor processiag electronics, This
additive random noise has a normal distribution .
with a variance equal to that expected of the star .
sensors. ’ o L : R

. The gyro drift model simulates three
components. They are: Constant bias drift,
sinusoidal drif and random drift.

In order to define an appropriate model,
these components were measured uging available
computer sampling and data reduction schemes
on test gyros, Less emphasis was placed on the
first two components since SPARS corrects for
the bias as part of the algorithin, and sinusocidal
drifts typically occur only during gyro warmup
or temperature transients, The latter are small
in SPARS due to the active gyro temperature con-
trol, Considerable emphasis was given to the
modeling of gyro randon! drift, however, because
of its importance in performance evaluation. It
is shown in Ref, 4 that the random drift of the
SPARS gyros can very closely be represented by
white noise over the frequency spectrum of in~
terest, Thus, a model for white noise &'ro drift
was developed, The following are considerations
of this development,

For times much longer than the random
gyro drift correlation time (i, e., longer than
the longest gyro drift autocorrelation function
time constant, which is usually quite short), it
is shown in Ref, 8 that:

Elaé(t)] = 271G (0) ¢t " (35)

where Af(t) is the atiitude error due to gyro
drift, G,,(C) denotes power spectral density at
zero frequency, t is time and E denotes expec-
tation. This shows that the long perisd variance
of the integral of exponentially correlated gyro
drift is proportional to the product of the power
spectral density at zero frequency and time. It
is not possible to simulate this phenomena

_directly with white noise on a digital computer,

due to the fact that a finite integration step size
must be used. The method of introducing ran-
dom rate error Aw; in the SPARS simulation can
be represented by the block diagram of Fig. 7,
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-HORMALLY DISTRIBUTED
RATE ERROR
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2ERO ORDERHOLD . | o
T Jaw
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£ R0 INTEGRATION STEP = At
Fig. 7. Random Gyro vrist
. Simulation :

The incremental attitude error incurred

during any given period At ig
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Aw, At (36)

A8 = Auy
and, gince the individual rate error samples
are uncorrelated, the Central Limit Theorem
can be invoked to give the error after » time
t = nAt:

)
8.(t) = AB
1 TR
: (37)
n
= At ) A Wy
i=1
which leads to the variance equation
ElAS (1] = n AYE (Awd) (38)

Fauaticns (35) and (38) lead to the following rela-
‘on which must be satisfied by the digital sfra-
ulation

2 Gx:: (0)
At

)1/2

(E(aw?) 3172 (39)

However, a gyro specification is not always
written in terms of the zero-irequency power
spectral density, but more often in terms of its
integral to some frequency, Woe

W

(]
fPSD =f Gxx(o)dw =2w G, (C) (40)

Ve

e

where fc =
L ci'me' second truth model integration step size and
Lo Ifel =
. standard deviation for the rate power spectral

.. density: C : , : :

e

' Notice that if the in‘tiégrationistep size were
changed to 0. 1 second, the rate power spectral
. density would have to be changed to

R TV ([psp)!/2

to yield the same simulation results. Equation
(42) defines the required standard deviation input
scaling of the gaussian random number generator
used in the SPARS simulation for modeling gyro
drift, :

rate to g.
quantized into an integral number of weighted
pulses for input to the system and the remainder
after quantization is added to measured rate in
the next sampling interval.

(42)
w./2m. As an example, consider a

0.5 Hz. These vi.lues yield the required

112 < (fesp)12,

(43)
.

The s*mnulated gyro drift is added to true
measured rate. This is then

Error Processing Technique

Attitude error is computed during the gimu-
lation run and stored on magnetic tape with
many other system variables for display and
input to the mary analysis routines available.

A running RMS of the attitude errors is also
generated in the simulation to indicate one
sigma {over time) performance.

This simulation was programmea using the

Honeywell -developed COMRADE (COMputer -~
Alded-DEsign) system which cperates on a
hybrid computer,
executive system that provides the user with a
man-machine communication link, enabling the
engineer to control the computer through a
repertoire of simple commands.
mands perinit the user to control all of the
input-outrat devices, run programs, adjust
input data, and graph dataon a display scope,
Emphasis is placed .on man-in~the -loop decision
making at a modest sacrifice in computer utili- .
zation efficiency. The SPARS simulation has
been incorporated within the framework of the
COMRADE system to allow simple and rapid
changes to system parameters, immediate dis -
play of results, and evaluation of results using
them as inputs to many cther siatist:cal and
spectral analysis programs.

This is an extensive on-line

These com-~

A ligt of input

T Y T

Wi,




" Table 1,

’ évailable in the COMRADE program library,
Several of these which have been particularly

" useful to the analysis of SPARS system errors

. and gyro drift data are described in Table z.

: Tablerl'. ‘ List of Si.mulatrionrr
Input Parameters

Inttial stitude error -
¢ inittal rate error
Limit cycle rate {three axex)
Limit cycle excursion angles {three axes}
Attitude jet thrust time and Ume constant

Star wensor random erroe

Gyra pulse weight
Gyro precounter sampling frequency
Fixed point attitude solution word ]fMlh'
-tectable star magnitode

Cyro fixed bias

flecuraive filtering parameters

Lalse Klar transits snd star catalog errora

e randan drify

Mar aemwor and detector grometry

Tolerance multiplicatica factor
L

e Table 2, Useful COMRADE
Library Frograms
?:‘m,c , Deecripiion
AUTOCOR Computes meun, varance, intensity, iinear trend,

Autocorrelation function, spectral density cstimates,
and spectral density eatimates convolved N the
Hamming spectral window on a set of dxta seompics,

VGURIER Computes the Fourier line SPCCIrun: oo A set of data
Famples using the Cocley and Tukey Fast Fowrser
Tran, form,

LPRINT Prints a rapid, low resolution graphical copy of
ANy X -y pair,

PROBDENS Computes mean, intenmity variance protatality
¢ensity function {PDF) and the PO mtegral on &
aciof data samples.,

SAMPLE Generates a set of data samples by periodically
sampling from one to five analtog =ignals at a
specified rate,

ANALYSIS AND SIMULA TION RESULTS

During the past two and a half years on the
SPARS program, a large amount of analytical

and co:nputer simulation results have been com-

piled, in addition to the actual component and
System testing efforts. This section will

: paréméters that can be varied in the"simularﬁorn
to investigate system performance is given in

" More than 45 standard analysis x‘out:li:és are

general error propagation characteristics of .
th2 strapdown mechanization, and to evaluate the
*. effects of gross gystem parameter changes prior
- to detailed computer simulation. In essence,
the steady state or quasi-steady state Riccati
equation and related steady staté stochastic
equations can be manipulated to yield RMS dyna-
mic attitude error values for updated attitude
reference systems. These equations can also be
manipulated to yield the required values of star
sensor accuracy or star transit interval for a
given level of system accuracy. This analysis
i8 performed on a single -axis basgis. Certain

three ~axis performance estimates,

i The steady-state performance of a svstem
- with gyros can be bounded quite easily from
-~ above and below. The lower bound ig obtained
'~ by assuming constant star transit intervals und
- an optimal linear filtering mechanization, - The
upper bound {8 obtained with a realistic star
transit frequency distribution (zero-order Pois-
son) and a particular nonoptimal filtering solu-
tion; namely, an attitude gain of one,
the attitude error variance. Then between star -
transits, the equation describing the buildup of
the variance is : .

Pro = Prope ¥ QAyy

(45)
where Q is the zero'-frequency power spectral
density of the gyro drift and Atay is the time
between transits. At a transit, the optimal
attitude gain is

P
n-
P . +R

. T T, -1 _
K, =P, H[HP _H4R]™ = (46)

where H=1 for this single-axis system and R

is the star sensor error variance. The attitude
variance update is then degcribed by
Pn+ = (1 - Kn H) Pn-
P
- - n- -
-[1 = +R]Pn~ (47
n-
P R
= - ——
Pn- + R

Now, the crucial step is in recognizing that fos
steady-siate operation and consgtant star transit
intervals,

(48)

Thus, substituting Eq, (47) into Eq. (45) using

describe a few of the more interesting and unique (48),
analysis and simulation results,
P_R
-~ Single-axis Analytical Resul = e :
[,.} ngle-axis Analytical Results P_ P TR " Qatyy (49)
e A single -axis analytical approach has been
used on SPARS to gain initial insight into the
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plausgible multipliers can be introduced to obtain

Let P be:-

N i e




in P-:

» PA'V is given l?y

where the N have bzen dropped because they are
now redundant. Eq. (49) is a quadratic equation

Eq. {50) clearly has only one positive solution.
The attitude error variance picture shown in
Fig, 8 can now be drawn, :

Attitude Error Variance Be- /

Fig. 8
R - havior (Lower Bound)

. The'mean—squax‘;e sinvg'le-axis attitude error
- o . Q At
P.. =p . —_AV
AV - 2
' 2 .2
Q Aty 1/2
| Ta av/
This is the single-axis attitude error lower
bound. It is optimistic because of the equal star
transit interval assumption.

(51)

+ R Q At

The upper bound is obtained by a quite dif-
ferent approach; by using the attitude gain = one
mechanization, and assuming that the star
transit interval spacing is Poisson distributed,
(This is a pretty good assumption. Also note
that the star transit interval.correlation plays
no role in this discussion). In this case, the
attitude variance propagates after a transit like

P=R+Qt (52)
Since the star transit intervals are 2€ero-
order Poisson distributed, the star transit in-
terval probabiii’y density function is
(4t - A o 2
PlAt) = —=—— ¢ (53)
AtAV AtAV
where At is the same number as in the con~

stant transit interval discussion, Now, the
probability densivy function for being in the
transit interval whose length is between t and
t+ At at any particular time is then given by the
first-order Poisson distribution

first-order
-\
Platy= & o A,y (54 -
(At )2
AV

During any particular transit interval, the aver-
age attitude variance is

p2.p Qatyy - RQAt,, = 0 (50)

e

: Q'QA‘AVV —_—

- uniform instead of Poisson, the average zttitude

i~ important point, as it shows the effect of inter-
- val distribution, ) This is the single-axis attitude
" error upper bound,

P =R-f~

(55)

There_foré, integrating over all}vpvoééible interval -
lengths :

R
Fay f LS XAt
s Q LAY § N .
. _.LZ vettlat,, gt e Q W2 ertlan
(CUNS LIS ; A 2 AV e
i . . »2(A(Av) o .
« R-Qm'lw

‘(Notice that if the transit interval spacing was

variance would be R + Q Atay /2. This 1s an

1t is a conservative estimate
because of the nonoptimal filtering assumption.

" Therefore: B
: !
Q2 Ati\v 1/4
1 + RQ AtAV
12 (57)
<P 2 mag at,)
, TRUE . .
Equations (51) and (56) are the equations of *ﬁ‘}
interest, as parametric curves can now be drawn A

for such things as star transit interval. One
word of caution, For wide fields of view, more
slits will tend to smooth out the interval irreg-
ularities and the attitude accuracy will approach
«he lower bound. However for small fields of
view, this will not be true, since the interval
distribution will remain Poisson no matter how
many slits are added, (Of course, AtAvy will go
down though).

The atove approach to parametric analysis
is valid only for a single-axis system. However,
to get a good idea of three axis performance,
multipl)-'_t_he answers by 3, i. e.,\/g‘- b ﬁ One
of the \/3 faciors comes from the fact that each
of the single-axis errors will be about the same
order of magnitude. Thus the vector sum would
be \/‘.!3- times any single component. The other
factor of \/3 comes from the fact that the aver-
age sensitivity (H) of attitude error in one axis
tc;‘arg_i,ven transit is not one, but a number like
1/ 8.

This approach to determining attitude refer-
ence performance and the parametric impact of
transit interval and star sensor accuracy, yields
a rapid inexpensive "ball-park" estimate which
defines the lirnits of system performance. In
problems where it is required to define a level
of performance in a short time, such as in pro-
posai exercises, it allows the investigator to re- K
main in close contact with the essence of the
problem, rather than becoming embroiled in com-
pletely unrelated problems involved with getting

St ismeeny e e < e L e e




a complex simulation »

nodified and operational in
2 short time, and minimizes the possibility of
error, since the answers are easily checked,

The meathed prdvided a‘g'liidve‘ in SPARS for

selection of input parameters for the simulation

whith was more complex and expensive to run,

Star-Transit interval Study

A comprehensive computer study of the atar-
transit interval characteristics of candidate SPARS
strapdown star sensors has been conducted to iden-
tify parametric relationships and the extreme
frequency variations possible; To establish
limits on potential System errors between star
sightings in the SPARS, which utilizes body-fixed
star sensors on a rotating vehicle with (drifting)
gyros for interpolation between sightings, it is
important to know how the interval between star

. sightings may vary. To optimize sensor and

system design, interval variation as a function

of star magnitude, sensor FOV, sensor orien-
tation, and orbit orientations must be known, A
computer analysis on transit intervals was there-
fore conducted early in the Phase 0 study (Ref. 3),

The analysis was made for a satellite in a
near-polar orbit, with a pitch motion of 240 deg/
hr. Star data were obtained from the Smithson-
ian star catalog (Ref. 9). To gain insight into the
effect of orbit orientation, six equally spaced line-
of-node arguments were used, For each of these,
runs were made for four limiting star magnitudes,
Since the initial objective was to bound the problem
and determine trends, a typical star sensor con-
figuration was used, namely two sensors with
single slits, both pointed 30 degrees off vertical
to the same side of the orbit plane and at an angle
of 60 degrees to each other in that plane., Runs
(swaths) were made with the sensors pointing in
turn to both sides of the orbit plane, Sensor FOV
was varied from 2 to 10 degrees,

The analysis consisted of averaging the time
interval between star-slit transits over one orbit
for one set of parameters, The summary results
of this analysis are given in Fig. 6. In Fig. 9
the lower and upper bounding lines represent the
best and worst star swaths found, respectively,
(The worst swath is not necessarily the same one
for different FOV's or lim iting magnitudes), The
line in the center of each spread represents the
mean time between transits for all swaths at that
magnitude. The spread indicates the range of
values resulting from the six different line-of-
node orientations. If a larger number of swaths
had been used, the mean points would fall more
exactly cn a straight, 45-deg line for smali
FOV's, That is, for a sufficiently large statis-
tical sample, as the FOV is doubled, the average
“ime between star transits is halved. These re-
sults show that for the baseline ootical system
the average time between star transits for all
orbits is 210 sec. For the extreme orbits, this
varies between 160 and 340 seconds, :

Dynamic Attitude Error Results

The SPARS simulations have identified that
the SPARS dynamic error requirement is easily
satisfied with the proven performance of GG334A
gyros and state-of-the-art star sensors, Single-
degree-of-freedom simulation results and the
more comprehensive three-degree-of-freedoin

. 8imulation have shown that there are two pri-
mary contributors to the dynamic SPARS atti- -
tude error; gvro randcin drift variance, and
star sensor error variance. It is possible -
with modest system complexity - to minimize
the effect of all other dynamic error sources, .
such as star transit interval (as shown in Fig, 11),
computational roundoff and integration algorithm
truncation, gyro pulse weight, fixed drift, and
gyro misalignment, Static errors caused by such
things as optical misalignments, shifts, and im-
perfect calibration were analyzed separately.

80C0 - | 2 5EMSORS, 30 DEG
. .o Lo 10 ONE SIDE OF
ORBIT PLANE, 200-
4000 P HM CIRCULAR KOON
PR ORBIT. =0, 30, 60,
: 90, 120, AND 150
DEG .

2]
-
2 2000
[
=8
z
Z< 1000
W
xa 800
« HEAVY LINE
=& THROL GH CENTER
G 400l OF SPREAC REPRE-
=5 SENTS MEAN OF SIX
wa ORBIT ORIENTATIONS
el
£3 2004
S
w
20 100 S—
oS 8of
43 4.0 | DIMMEST DE-
x2 3 * YECTABLE
s A\ STAR (VISUAL
s a0 MAGNITUDE,
< M)
Al
20 5.0
10J t )'T 6.0
0.1 0.2 0.4 L0 20 40 10 20 40 Bo
0.8 8.0
STAR SENSOR FIELD OF VIEW (DEG)
Fig. 9,

Star Transit Intervalg versus FOV

The effects of the two primary error scurces
on system performance are shown in Figs. 10
through 12, The normalized three-axis, 1g
attitude reference system dyanmic error is
shown as a function of tha empirical noise param-
eter U, which is discussed in the SPARS data
processing section of this document., U is re-
lated to the forward loop gain of the recursive
filtering calculations during steady-state opera-
tion. The figures show that the optimum system
accuracy is a very shallow function of U until a
relatively large value is reached. This is in
contrast to the results that were obtained early
in the study.when a random-walk gyro drift model
Wwas used. In that case, optimal system perfor-
mance was quite sensitive to U, However, the
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ext ensive gyro testing (Ref, 4) has shown conclu-
sively that the random-process gyro model being

used presently is the correct representation in
the frequency range of interest.
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The simulation results summarized in Figs.
10 to 12 were used to create design curves for
the Phase O star sensor specifications.
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The baseline system specified in ‘Phase O
had an ample margin of meeting the required one
sigma accuracy. There were three main reasons
for having this margin,

(1) The lo errors shown were computed

.over many orbits to be truly repre-
sentative. The system performauce
statistics are somewhat variable
from orbit to orbit due to fluctuaiions

" in the filtering equations and varia-
tions in the number of stars seen;
the baseline mechanization provides
sufficient margin to comply with the
specified accuracy even for the
"worst orbit" condition,

The primary intent of the 10 SPARS
- accuracy requirement is that the

- system error never exceed three
times this value. This is true re-
gardless of attitude error statistical
- distribution, In the case of SPARS,
the attitude error statistics are
"steeper' than Gaussian, and suf-
ficient margin is provided to guar-
antee 3¢ performance.

Sufficient margin was also allowed
for static errors, shifts, etc., which
were specified as design-to param-
eters.

The following significant conclusions have
been reached:

(1) The system performance is not
sensitive to any nonuniform distri-
bution of stars,

The GG334 gyro proven performance
is more than adequate for SPARS.

The risk involved, if any, due to the
development status of the star sensor
is minimized, because the star sensor
error is attenuated in its effect on
system error,

(2)

(3)

Star Sensor Geometry Results

The SPARS three-degree-of-freedom simu-
lation results have shown that the attitude refer-
ence system error time history is relatively in-
sengitive to the star sensor angular orientations
and detector geometries over a broad range of
values, Probably the most useful function of the
SPARS three degree-of-freedom {3 DOF') simula-
tion at Honeywell has been the determination of
the effect of various changesin star sensor geom-
etry and slit configuration, It would be extremely
difficuli to obtain reasonable estimates of these
sensitivities analytically, since the parametric
relationships involved arg nighly nonlinear and
often not too intuitive, However, operating in an
on-line mode with the SPAES 3 DOF simulation,
observing the performance characteristics for
various parametric combinations, and making
corresponding changes resulted in a rapid deter-
mination of the effects of sensor gecomeiry on
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“system performance.

! The significant conclusion
of this study has been that star sensor geometry,

other than the FOV, does not have a strong effect. "
' on system performance. -

'Telééébpé look-angle studies indicate that

“there is no apparent performance advantage to

having the individual star telescopes cut different
star swaths in the celestial sphere, With this

" being the case, having the telescopes.oriented
. one behind the other eliminated 10 star simula-

tors in the lab test and minimized the star catalog
size. The studies further indicated that the out-
of-orbit star swath angle and the angle between
star telescopes have little effect on performance
for a wide range of angles, .

Because ;}erformarice is not a constraint and’
because there is a severe sun shield penalty for
lock angles closer than 30 deg to the gun, the

‘telescupes are oriented 60 deg apart. This sep-

aration ensures that at least one of the two sen-
S0rs can see stars at all times without the tele-
scopes having to be oriented closer than 60 deg
to ihe horizon,

The salient results {normalized) of the star
sensor slit studies are shown on Fig. 13 for the
star sensor geometricai combinations considered,
Both one and two sensor configurations were
studied. The first two-sensor configuration .
shown has a single slit in each sensor. The slits
are canted at 45 deg to the direction of motion in
an attempt to gain attitude information about both
axes parallel to the focal plane, The resulting
error is seen to be relatively large. The addj-
tion of a second slit more than doubles the number
of star transits and yields increased pitch axis
sensitivity, cutting the attitude error in half,
Also shown are the performance results of a
number of two-sensor configurations with three
slits per sensor, For the first one shown, it is
seen that the slit angle has little effect on system
performance, The reason for this is that in-
creasing th2 angle increases the sensitivity to
attitude errors about an axis parallel to the di-
rection of motion, but counteracting this is the
fact that fewer stars are seen by the canted slits,
Several asymmetrical three-slit arrangements
were also investigated, and very little change in
sysiem performance was observed,

One additional significant result of this study
1s that configurations with just one star sensor did
not perform as badly as might be expected. This
result has strong implications on system relia-
bility considerations, since the failure of one of
two star sensor s would not be catastrophic and a
modest performance degradation would be ex-
perienced. The reason one might expect a big
error when using only one sensor is that the
sensitivity of one sensor to attitude errors about
its optical axis is quite low, Fortunately, thisis
compensated for by the fact that this axis keeps
changing continually with respect ¢o inertial
space, 5o that three-axis inertial information is
ultimately obtained,

OHE-SENSOR :
COSFIGURATIONS v
| —LONFICURATIONS

WO- SL NS00
CONFIGURATIONS

jNoruaLizED

RORWALIZED

THREE - THREE-
AXIS sv‘cus $AXIS SPARS
LRROR (1o} ERRDR (Lo}

Fig. 13, Effect of Star Sensor
: Detector Geometry

Computational Error Study

Resuits obtained, with the SPARS three-degree-
of-freedom (2 DOF) simulation have demonstrated
that the computational errors in attitude calcula-
tion are small with respect to other system errar
contributors when the 1824 computer is used, and-
that the design value of gyro pulse weight is an
optimum value, There are three primary com-
putational contributors to the SPARS attitude
error: integration algorithm truncation, roundoff
of the numerical values of critical sarameters
due to finite register length, and the quantization
of attitude changes due to the digital rebalance
clectronics of the gyros, There is a tradeoff
between roundoff errors and truncation errors
for a given word length and integration algorithm,
Longer integration step sizes result in a poorer
approximation of the algorithm to the kinematics
of the attitude relationships, whereas shorter step
sizes resulc in more computer adds and multiplies
per unit time, resulting in more rapid loss of ac-
curacy in the least significant bits of the attitude
variables, :
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.~ “The SPARS 3 DOF simulation was used to
evaluate integration algorithms and computation
step sizes. The first method investigated was a
first-order (rectangular) method with a step size
of 2, 0 sec. The resulting computational rift

., rate was approximately 0.1 deg/hr. In an effort
".to reduce this drift to an acceptable value, a
. 3econd-order Runge-Kutta/improved Euler al-
Jorithm was added, resulting in a reduction of
the computational drift rate by three orders of
magnitude. Operating within the framework of
a'typical system mechanization, it is important
to know what effect this has on the attitude error
statistics, Fig. 14a shows the effect of second-
. order integration step size on SPARS perform-
s ance. The best performance occurs in the 1-sec
range, with the error increasing somewhat spor-
- adically for longer time, and also increasing in

. the 0, 1-gec region as roundoff error starts to

come into play, However, this study was done
at 39-bit accuracy, and the optimum point will
- 8hift to the left for the baseline 48-bit integra-
- tion in the UNIVAC 1824,. e

- Fig. 14c. The dotted line is the result that ig
- obtained when the standard deviation of the
= quantization uncertainty for each gyro (1/ V3
times the pulse weight) is root-sum-squared
with the attitude error at a pulse weight of zero,
The actual data are seen to roughly follow this
" expected trend, with some superimposed ""beat
. frequency" effects resulting from the interplay
between pulse weight size and forced limit cycle
. amplitudes that were used in the simulation to
maintain worst-case rates and maximum jet
firings. The baseline choice of pulse weight is
substantiated by the data,

ACQUISITION STUDIES

Prior to steady-state operation, an acquisi-
tion phase is necessary to rernove large attitude
uncertainties and residual gyro biases, A crude
initial vehicle attitude relative to inertial space

+*- may be obtained from the orbital ephemeris data

" and assumed vehicle earth-oriented control, The

‘.uncertainties in this computation are directly
proportional to the vehicle control system limit
cycle amplitude. . These could be reduced if the

- error signals from the separate vehicle control
system were used in the initial calculation, Al-
though not necessary, this -vould reduce acquisi-~
tion time,

The body attitude solution begins from the
initial condition using gyro data and preflight
drift compensation coefficients. Initial residual
gyro drift uncertainty may be a relatively large
constant bias. This is gradually reduced to the
level of the random drift-by the rate portion of

" The effect of gyr'o‘.pﬁlse weight is shownin =~

(a)
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Fig. 14, Computational Effects

is clear from Fig. 15 that if only a single detec-
table star were within the field of view, there
would still be an ambiguity as to which detector
was involved in a transit, Thus, acquistion re-
quires a scherne to identify both star and detector
at each transit before a staie correction can be
». computed. This is not necessary in steady-state
since the attitude uncertainties are extremely
small and a small measurement tolerance will
sort out the proper slit ag well as star, Thus,
it is from acquisition that the requirement for a
slit identification signal sent from the star sen-
sors to the computer originates,

the state corrections as they are made at accepted

star transits.

Due to the large initial attitude uncertainty,
special legic is required during acquisition., At
.a star transit, there may be more than one cata-
logued star within the attitude uncertainty of any
given detector slit and more than one slit within
the attitude uncertainty of the transiting star, It

As mentioned above, there may be several
stars at a transit time that are within the attitude
uncertainiy of the identified detector plane. The
catalogued star which gives the smallest dot prod-
uct (DOT from Eq. 18) is not necessarily the star
causging the transit. Applying a state correction
from a faise star can cause vapid divergence of
the attituae error, since this constitutes a
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ic algorithm
assumptions, To avoid this, the values of DOT
for all candidate stars are tested against a tol-
erance which represents the maximum expected
value of DOT, 1If more than one star giveg s
magnitude of DOT within the tolerance, it can be
inferred that the stars are spaced too closely for
identification and the transit must be neglected,
Similarly, if none of the DOT magnitudes are
within the tolerance, the transit must be disre-
garded. The latter case may be due to transiting
an uncatalogued star, an illuminated dust or pro-
pellant particle, or noise in the detector electron-
ics; in all of these situations no state correction
should be made,

The tolerarce used in the candidate selection
needs to be large at the start of acquisition be-
cause of the large attitude uncertainty. As the
uncertainty is reduced, the tolerance should also

"be reduced to minirnize the number of rejected

transits due to ambiguities, thus increasing the

“percentage of accepted transits.,

The most appropriate time-variant tolerance
is

e 12
T = M{npaT « R (58)

where the bracketed quantity is the variance of
DOT, and js computed in Eq, 24, The factor, M
is a constant multiplier. The quantity HPHT jg
that portion of the variance in DOT due to attitude
uncertainties, and R is that portion dué to mea-
Surement uncertainties within the sensor itself,
The multiplier, M, boosts up the tolerance to
cover the full range of possible measurement
values since [HPHT + R}I/‘Z is & one-sigma un-
certainty and thus is often smaller than the
actual error, '

"« tolerance  convergence is shown in Fig. 16. The
" dot product and tolerance generally decrease at

-inxt‘ié;lly the values in the P matrix are large’ -
to represent initial condition uncertainties, These

- values diminish at each state correction, consig-

tent with expected system error. When steady-
state performance is reached the covariance ma-

_trix terms are small and T approaches the level

of R1/2, resulting in acceptance of nearly every

< valid tiransgit, T will not tend to zero because of
~ :
~ AY
-~ .

‘the constant variance R and the plant noise term
added to prevent the terms !n P from diminishing
to zero, o FO sl e

" An illustrative e'xamplé of the dét'proclsixct and
each state correction but the tolerance is always

‘greater than the correct dot product at each valid
traasit, e L ;

/ , TIMES
f OF STAR

erRAMSlTS )

T=MnpH' 0_R)1/2 ’

. RADIANS

Fig. 18, Example of DOT Prdduct and
.. Tolerance Convergence

Despite the logic to guard against false trans-
its, a small probability etill exists that a transit
can be incorrectly identified. This resulis when
a iransit from an uncatalogued star, dust particle,
ete, occurs and a DOT from one and only one
catalogued star is less than the tolerance at that
time. The result is an incorrent state correction,
which usually causes increased system error; yet
the covariance matrix and hence the tolerance for
accepting future transits decreases s if the cor-
rection were made on the correct star, Further
transits may be rejected or falsely identified
due to the correct star being outside the reduced
acceptability tolerance, In most cases this
causes the system error to increase rapidly as
shown in Fig. 17, due to gyro bias compensation
errors. Ina few cases the attitude error is ex-
cessive but not diverging, and is characterized
by continued rejection of future star transits,

I'ig., 18 is an example of this tolerance/dot prod-
uct relationship, System error could remain
outside the tolerance without diverging if a means
were not provided for sensing and correcting the
situaticn,

Two methods are used to test for excessive
attitude error., The first is a comparison of
system Euler angles to a crude attitude based on
orhital ephemeris. If the difference for any one
avis i3 greater than that expected from limit cycle
and epheisoris uncertainties, the acquisition
process is regtarted, Should the attitude error
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. uncertainties is shown in Fig, 19,
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‘ Fig., 18 E’xample of Excessive Attitude

Error After Acceptance of False
. Transit
‘become large enough to cause rejection of transg-
ite on the basis ot tolerance, but not sufficiently
large s to cause restart by the above method, a
gecond method is used, It is:.tost on the number
of suceessive transits for which there are no
‘OT*s from catalogued stars within the toler-
Aces. A few such trancits must be permitted to
allow for uncatalogued stars and false transit
signals, Rejected transits based on more than
one DOIT within the tolerance should not be in-
cluded in the count to determine restart, since
this often occurs in the early stages of conver-
gence in a fairly dense portion of the sky. How-
ever, many zero candidate transits in succession
indicate that the error estimates are lower than
the actual errors and the acquisition process
must be restarted.

Tlse simulation program previously described
was used to study convergence time sensitivities
to initizl conditions and system parameters, A
plot of convergence time versus initial condition
In general,
the comvergence time increases as the initial
attitude errors increase. Sensitivity to changes
in initial drift compensation errors was small

- except for the worst case 2-1/4 degree and 0, 5

degreefhour error condition. (Convergence time

with L=ro initial crrors was not zero because the
tially large covariance matrix causes early
de currections to be excessive). Convergence

-ames cun be further reduced when the initial un-
certaingies arc reduced if a corresponding re-
duction is made in the initial covariance matrix,

 TIME TO CONVEPGE (NORMALIZED) ~~ © -
: g . ‘

NOMINAL STAR SENSOR AND DETECTOR GEOMETRY

, 1 ' 21/4
INITIAL ATTITUDE ERROR (DEG) EACH AXIS

Fig. 19. Convergence versus Initial
Condition Uncertainties

Simulation runs were made to investigate
two aspects of the effect of star sensor detector
sensitivity; 1) the effect of the number of de-
tectable stars as establiched by detector sensi-
tivity, and 2) the effect of a difference between
the number of catalogued stars and the number
of detectable stars,

One would expect that as the number of de-
tectable stars increases, convergence time will
decrease, simply because attitude measurements
become more frequent. However, as the number
of detectable starg is further increased, a point
will be reached where convergence time begins
to increase again due to rejections of multiple
transit candidates within the tolerance. Results
of simulation runs indicated that this latter effect
was not a significant factor crer the range of de-
tector sensitivities Leing considered. In fact, the
effect of the number of detectable stars was found
to be much less important than the difference be-
tween the number of detectoble and catalogued
stars, a

The effect of such a di{ference is shown in
Fig. 20, These data were obtained by varying
the number of detectable stars while holding
fixed the number of catalogued stars. The re-
sults, as expected, indicate that the better the
assessment of which stars the detector can "see",
the faster the acquisition process.

Simulation data was also obtained to show
sensitivity of convergance time to star sensor
field of view (FOV)., The results, shown inFig.
21, indicate that a large FOV is désirable from
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‘in SPARS computations.
rently being applied in Phase IB tc orogram the
SPARS algorithms for the UNIVAC 1324C flight
. computer, Laboratory tests will begin in early-

: 1970 using the programmed 1824 wi

roblems of interrupts, which'is a critical area -
That 'mowledge is cur-

2 k0,25 DEGMHR * ... SPARS prototype (Ref. 10).
o “zi7.- well DDP-516 computer for rea

e w7 in parallel with the 1824, .
1~ S

- An estimate of the computational require-~ : .’
*» ments for the 1824 compuier is given in Table 3.
. This shows that the SPARS algorithms require

less than half of the capacity of this computer
from both a storage and speed standpoint. Thus,
o ! -~ . the SPARS can be implemented in a flight vehicle

o 0.5 1.0 1.5 with a typical aerospace general purpose com-
puter with plenty of space and time remaining
for other computational functions (e,
.. control, experiment pointing, etc, ).

"The simulation program described herein
has been a powerful tool in analyzing SPARS

- performance and delimiting design parameters,
The simulation results presented have shown
that the SPARS dynamic errors are within the

requirements of the SPARS prograsm for state-

th a complete
The SPARS algor-

. ithms are also being programmed for a Foney--, °
1 time solution

g., vehicle

“NOMINAL SENSOR GEOMETRY| - of-the-art components, Needless to say, the
o simulation data, as wz11 as test data, have
'N'I’%GATETKEE%XIESRRORS: proved the feasibility of the SPARS algorithms.
INITIAL ggg%%mﬂ ERRORS: Table 3. SPARS Computational Requirements -
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RERIVATION OF GEOMETRY MATRIX

an acquisiticn standpoint, However, this must
be traded off against other considerations such
as accuracy, the "window required in the space-
craft,” and sun baffling, all of which pose prob-

lems at large fields of view, Thug:
’
CONCLUSION 65,D0OT
where

The SPARS algorithms described herein

have been proven in digital simulation and real
time system test, During the tests performed

in Phasc [A, the algorithms were implemented

on an SDS5-9300 computer, Most of the algorithms
were programmed in Fortran, with the exception
of input/output interrupt servicing routines, Con-
siderable knowledge was gained in handling the

" and DOT =

The geometry matrix, H, is defined as the
matrix of partial derivatives relating perturba-
tions in state to perturbations in measurement,

y=[H16 %

[} .
Hi = E‘Tl (DOT) (i = 1-6)

i’ .{[TBI @) §I> (h3)
Py

N

(a1)

(A2)




~ which is the(dot produét of the uriit normal vec-

‘ Fvaluatmg (A2) yxelds

Oper ztion on text Eq. 121) yxelds the partzal
. derivatwes- :

tor to the detector slit plane, 1,;, in body
coordinates and the unit vector {\{) the star ray,
SI. tn the inertial coordinate frame transformed
to body coordinates thru [T .}, The dot product
represents the one dlmensx&?ﬂlal angular error
(smeall angle apprommatwn) in the transformation
matrix [’f Jat the measured time of transit,

(rrm (t)J s}} “ :

H 3'3"—{
[’I'B1 (t)] 3 } (A4)

f.'rB {

(1‘= 1 6)

’M [.T I] -l ][T ] ""“"5:’,--.

v, sxm[z v sim,t/ \) smxl/

1
~=»”2 siné v, cosp pz cossy [T, ]

vy sin@ - cos ¢ Vy cosé

s—

a N ;- .
357 0Th0 = Gy [Tyl (a6)
Ay 0 -'x1‘|
=pg 0 vt [Tl
v; 0 -y
3 .. )
B LTBI] » [G\L'] [TOI] (A7)
By ¥a M3
=l-h Xy -Ag [TOI]
0 0 0
2 3
I8, Ty = 5B, [Tyl
(A8)
3
= 5p, To! = 0

where )\i' By and v, are direction cosines

between the body x, ¥, and =

and the i
coordinate frame (i =1,

axes, respectively,

axis of the orbit oriented inertial
2, 3), and 8, 0, and V¥

are the inertial Euler angles roll, pitch, and
ya;, respectively. .
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: body rates

The’geometry matrix then becomes

H, N .{[G] fr ]s}, l=¢('AQ9)?

Dty Hy 00 03

APPENDIX B
. DERIVATION OF TRANSITION MATRIX

" The linearized statdﬁvecto'r elements have
. been defined as perturbations from the non linear
solution values of three Euler angles and three

(B1)

It is desired to define tne fundamental ma-
trix, [F ], in the solution of the linearized state
propagation equation

£
x = [F]x (B2)
since that matrix is required for determination

of the transition matrix, &,

The Euler angles ¢, 0, y relate the angular
position of the body relative to an orbit oriented
reference frame, Since the body rotdtes thru
2 nradians in pitch and only very small angles in
the other two axes, a pitch-roll-yaw <equence
was chosen to avoeid singularities.

To obtaln the relation between Euler rates
and body rates, consider the infinitesimal
rotation 81 about some axis. This can be repre-
sented with components:

o0 = 86d+ 091 + SYK (B3)
vhere 1, 5, and K are an orthegonal right hand
triad fixed in the orbital refervence frame,

— — - -

i, j, and k are a similar triad fixed in the body
and the primes indicate convenient intermediate
frames. The vectors J, 1', and K can be

represented in terms of i, ;: and k as follows:

J = J"cos ¢ -k sin ¢

=31
"

cos ¥ ~ J—.S n (B4)




L RS Y %

AR,

Substituting these into Eq.

limit as 6t goes to zer

(B3} gives
- n =80 (;cbs Y cos Q+.;sixi Ycos ¢
Lot i i)

R T O
e Lol msy -
= (00 siny coz ¢+ 82 cos w‘).i. '

H860cos Y cos @ - §dsiny)]
L H-8sing ¥ 6P E. St
Dividing both sides of Eq. (B5) by 6t and taking the
= Ot ar

-

%:l = (§siny cos ¢ + Scosy) i
+{fcosycos ¢ ~ &5sun,b),]-. (B6)
+(-fsing +Y)E v
But the : 3-: Ecomponents of gé—] are just the body
rates p, q, and r respectively.

y

p= ésint,// cos ¢ + dcos ¥

g =6coscos ¢ - 3 sin ] (B7)
r = -6 sin O.+ z,’/

Finally colving Eq. (B7) the Euler rates are

$=pcosy -qsiny

6 =(psiny + qcos ) Cl?;,; (38) .
Y =r + tan #(g cos ¥y +p sin )

Let
P =Py, * By
@ = ay * B (B9)
¥oEor, B,

wherep , q , and r_ are the measured rates
m m m .
and B, B, and BL are the compensation terms
X 2 .

for constant gyro bias, which are determined
initially in calibration but which are desired to
be updated as part of the state vector,

Then upon linearization

Ap = AB

X
i AgQ = ;\B}_ (B10)
Ar = A.Bz

-7+ at a reference which includes limit cycling and
- .. taking only first order terms o

. The linearized state equation X =

Expanding'Eci. (BS) in a Taylof series evaluated

A% a Ao patn sy q eos V&Y + co8 Y3p = sin pag

a8 -%A&-(psinwt qcosy'/)-“"—;_\;
R co8"3

© Targ (P oo WA - qsin b+ sin Yap s cos vag (B11)

-uccza(qco;\\.'z*ptin;u;\a' R
* lan 9(-qsln¢¢x{1+p_co;wa¢tvlin;’;.\p v
* Cos Yiq) + Ar .

matrix form is then

T e

i BT g EuE cos g ain 1
: : l. L'cm.\;vyunm.-c:a 9 (peosigringtiang HGtang congt2as L |y I(Blz)
ap ;o 9 . LN - e R A Al .
: b L. . o N .
;.m,l ! 6 - e o 0 e o an
i;n(;" ] e e e e

The solution of the transition matrix, 03 (t;t,)],
makes use of this same matrix, [F], andis
well known to he

S l= (FIletg]  (n13)

where [ $(to;10)) =1, the identity matr.x, which
is initialized at every star transit, By taking
advantage of the many zero elements of (F]

Eq. (B123) can be written

¢, ., =F ¢ +Fl ¢ .+ F [

1, 1,3 73,j 474, 1,5 °5,j
§2..]'=F2.1§1,j+F2,3¢3,j+F2,4§4,j

*Fo,5 %5, (B14)

§3,j=F

3,1 8,7 Fg 5 93,57 Fg 4 8y
*Fa5 45,5t #g,

Q‘ilj B éle N ésl\) =0
i=L2,...,6

APPENDIX C
NURIVATION OF THE "NOISE MATRIX," U@1)

The propagation of white olant noise in the
discrete case of linear recursive filtering can
be expressed in the following form

t ,
u(t) f LT Q) 3Tt r) dr (Cu)
t _
k
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(for example, see Ref, 11). The matrix is the
transition matrix given by Eq, (28) in the text,
and Q{7) is the covariance expectation of the
plant noise, . . :

i.e.;'

CERIVOT0] = Qe sitr)

where v(t) is the plant noise vector in the
canonical equation
CAx@. FEm e+ (c3)

When random gyro drift is the only plant noige )
vy B
L valt)

e =

where vi{t), vo(t), and va{t) are the expected
random drift components aiong the orthogonal .
axes, and are assumed to be white noise over
the specirum of interest, Substituting this in
Eq. (C2) yields : :

vl o o o o o
o vt o o 0 e
Qb =| 0 o v;2 0o o of (c®
0 0o 0 0 0 o
lo 6o 0 o0 0 o
K e o o o o]

In order to obtain a closed form solution for %
from

¢, 1) = [F()] &(t, 7) (cs)
17(t) must be describable by a continuous analytic
function, If it is assumed that Y = ¢ = ¢ and
g = const, in F(t) [Eq. 29) of the text], then
5 (t, 7) becomes

cos gt 0 -sinqgt _‘li!in qt 0 -:T(l:cos qt_)]
0 ] [1] 0 t 0
§l,t) = leingt 0 cosqt r;(lcos qt) 0 é(sin gt} (C7)
[\} 4] [ 1 [ o
Q [ 0 0 i o I .
A4 Q 0 ) 0 1 J

If it is further assumed that star transits occur
frequently enough that cos qt = 1 and

sin qt > qt, then:

(cay

ey

o]
01
t (C8)
0
0.
0

: Q(t,fs = qt

© 00 =~ O
o oo = e il

0O 0O 0 0 O

0 0 0

" Substitution of Eq. (C5) and (C8) into (C1) and
integrating yields . :

-,
wiatg 0 0. 000
o vlParz 0 o000
‘ o |(co
0
: : ‘ 0
00 e o_J

v ¢

oo ©
o o o o
(=)

o oo o
- - -

"where AtT = t-tk and the assumptions have

been made that;

2 2 2
v >>(v1 - V3 ) qt

and

vy,

2 2 22 '
v; >>w,i q t .
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" PREFACE

The Symposium on Spacecraft Attitude Determination was
held at The Aerospace Corporation, El Segundo, California, on
September 30 and October 1-2, 1969. It was coupnnsored by
the Air Force Systems Command, Space and Missile Systems
Crganization, and The Aerospace Corporation.,

The symposium brought together 306 representativés from
44 industrial, governmental, and educational organizations con-
cerned with spacecrait attitude determination,

The purpose of the symposium was in general to present
a broad coverage of the spacecraft attitude determination prob-
lem andin particular toreview the advances in sensing and data
proceésing techaiques related tospacecraft attitude determina-
tion, to assess current capabilities, and to provide an exchange
of ideas among pecple who have an active interest in the fjeld.
The sponsors hope that the symposium has stimulated newz;deas
and will lead to the advancement of spacecraft attitude determi-
nation potentials, .

Symposium cochairmen were D, Evans, Captain, USAF,

L, J. Henrikson, and J. E. Lesinski.
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