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Abstract—This paper presents two new mathematical approaches to the optimal spacecraft attitude
determination based on vector observations: EULER-2 and EULER-n. They compute the optimal Euler
axis and angle by a deterministic and an iterative method, respectively. EULER-2, whose application is
restricted when only two unit-vector pairs are available (n = 2), is based on the attitude matrix rotation
property and on a demonstrated co-planarity condition. This co-planarity condition allows also the
extension of the existing TRIAD algorithm to the optimal solution, getting TRIAD-2. The EULER-n
algorithm, which has no limitation on the unit-vector number n, uses a recursive equation which converges
with only one or two iterations when using EULER-2 for evaluating the starting point. Some numerical
tests on accuracy and computational speed are performed for EULER-2, TRIAD-2, and EULER-n. Plots
show that all these three new optimal attitude estimation algorithms are particularly suitable for fast
optimal attitude determination. © 1997 Elsevier Science Ltd.

INTRODUCTION

The rotation representation by means of the Euler’s
axis and angle provides, as compared to other
methods (quaternion, Gibb’s vector, Euler’s angles,
etc.), the undoubted advantage of supplying in an
explicit way, the physical parameters of the rotation
itself. The attitude matrix A4, expressed by the
rotation axis (Euler axis ¢) and angle (Euler angle @)

A=1Tcos®+ (1 —cos P)ee”" —ésin® (1)

can be considered the rotation operator which (in the
ideal case), rotates the reference unit-vector v to the
observed unit-vector s, that is 4Av = 5 (Fig. 1).

The optimal attitude determination problem
consists of the estimation of the attitude represen-
tation (matrix, quaternion, Euler axis and angle,
Euler angles, Gibb’s vector, etc.) by respecting a “‘best
criteria”, as those introduced by Wahba (1965) {1],
and by using a data set consisting of # > 2 unit-vector
pair (s; ), indicating the same ith direction in two
different reference systems, and with the precision of
each pair given by relative weights «;,, such that
Ta=1.

EULER-2: THE IDEAL CASE

Let us consider when » = 2 and the ideal case
Avy =5, Av,=3s,, 2

that is when s's, = v]v, is verified. In this ideal case
the previous equation states that the measurement
unit-vectors (s,,5,) are obtained by the rotation of the
reference unit-vectors (v,,1,) about e by the angle .
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This means », and v, each lie on a cone about e.
Therefore, we can write

e, =e's, efv,—5)=0
{eTvz =e's, = {eT(vz —5)=0 &
This means that the Euler axis e is perpendicular to

both vectors (v, —s,) and (v, — s5,). Therefore the
Euler axis and angle (e,®) can be evaluated by using

{e= L @-s) x(m-s)

= o= 5) X (0, — 5)|
sin® = zTew
cos® =z"w, 4

where w=s5,— (s]e)e, z =v, — (vVe)e and the sub-
script i can be either | or 2. The attitude matrix A is
then obtained by using equation (1).

EULER-2: THE REAL CASE

In general, that is when considering the real case,
the condition sis, = v]p, is not verified. Therefore, it
is not possible to devise such an attitude matrix which
satisfies both conditions (2). In this case, however, it
is possible to compute a matrix A* which optimally
estimates the attitude matrix A by satisfying Wahba’s
“optimal condition”

0. = YasTA*s, = Yoslx, =Y« cos §, = max (5)
{ { i

where we have set 4*p,=x, #s, and therefore
x'x, = vlv,. Hereafter it will be demonstrated that,
when n = 2, the plane defined by the unit-vectors x,
and x, is the same as that of s, and s,. This implies
a co-planarity condition between s,, s,, x, and x,.
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Fig. 1. Rotational property of attitude matrix.

In order to demonstrate this, let us for the moment
consider the unit-vector x, as fixed in space.

Therefore, referring to the Fig. 2, let us compute x,
which maximizes the Wahba Loss function (5). The
problem is to maximize ¢, with the two constraints
of a fixed angle between x and x,
(x]x, = v]v, = cos 8), and x, be a unit-vector
(xlx,=1). By using the Lagrangian multiplier
technique the augmented cost function is

o = aySix, + os]x, — A(xTx, — cos 3.)
—A(xfx, — 1) =max. (6)
By taking the derivative we obtain the condition

*
%9;" =8 — Ay, — 24, =0, )

which implies the solution
— 4x,)/(24,) . (®)

This means x, can be linearly expressed by the
unit-vectors s, and x, and consequently x, is
co-planar to them. Therefore, wherever the unit-vec-
tor x; is pointing (right or wrong direction), the
optimal condition is obtained when s, x; and x, are
co-planar. In the same way it is possible to
demonstrate that wherever the unit-vector x, is

Xy = (s,

Fig. 2. Solution for x; unit-vector.

xp=Avy;

Fig. 3. Co-plenarity condition.

pointing the unit-vectors s,, x; and x, must also be
co-planar.

Therefore, in order to satisfy both conditions the
unit-vectors x, and x, must to lie on the plane of s,
and s, (Fig. 3). Based on this co-planarity condition
we can now evaluate the x, and x, directions.

The optimization, in the Wahba sense, implies

Gw = @, €08 §, + @, cos 9, = max &)

Since 9,=9,—- 9, -9, (Fig. 3), this condition is
satisfied when

a sin 9, = a, sin 9, (10)

equations (9) and (10) lead to

sin 9, = a sin(9, — 9,)
cos &y = o + a2 cos(9, — 9,)

(I

When 8, has been computed (and therefore also
$=9-9.-9)itis possible to evaluate

_ §.sin{3, + 9 + s, sin §,
- sin 9,
_ 5 sin(8, + 8) + 5, sin 9,
- sin 3,

(12

Once x, and x, have been evaluated, the optimal
estimation of the Euler axis and angle is given by

T o= x) x (0, — x|
sin @* = z7é*w
cos O* = 7Ty, (13)
where w = x, — (x/e*)e*, z =, — (v7e*)e* and the
subscript i can be either 1 or 2. The optimal attitude
matrix estimation 4* is then obtained by using
equation (1).
An alternative way to compute x, and x, can be
devised by first computing n, = s, x 85/|si % s9. Then,

the unit-vector x, can also be expressed as
X, = R(n.,3,)x, where

R(@n..9.) = I cos 8, + (1 — cos 9,)nnT + A sin 9, (14)

{e* _ (o —x) x (v, — Xy)
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is the rotation matrix about m, of an angle J,.
Wahba's condition may also be written as

6, = 051X, + a.5TR(n,,3.)x, = y"x, = max (15)

In order to maximize o, the unit-vector x, must
therefore be parallel to y. This means x, = y/|y| and
then x, = R(n,.9,)x,.

TRIAD-2: TRIAD OPTIMIZATION

The main idea of the TRIAD attitude determi-
nation algorithm (2] is based on devising two triads
V=[v,v,v]and S =Is, s, s] constructed using the
reference and observed vectors, respectively. The
matrices ¥ and S can be devised in any fashion,
provided that A*} =8 and the matrix ¥ is not
singular (this means that the three vectors »,, », and
v. are not co-planar, that is o]8,0. # 0). If ¥ and S are
chosen be orthonormals, as in Ref. [2], the solution
is given by 4* = SV".

Based on the co-planarity condition between s, x|,
s, and x,, it is possible to enhance the TRIAD
algorithm to the optimal solution. As a result of this
property the directions indicated by s, x s, and
A*(v, x vy are the same. One therefore selects these
directions to belong to the two triads. Therefore, let
us choose

(16)

o X
p=n = 220

—n = 5 X §,
o e x v

Tos o x sy

As already noted, the unit-vectors x, = 4A*p, and
x, = A*v, do not coincide with s, and s,, but they
make angles 3, and 3, respectively (Fig. 3). This
means that, if we had chosen v, as one of the reference
triad components, the corresponding observed triad
component should not have been s,, but x, instead.
The latter can be regarded as the s, vector rotated by
the angle 9, about the a, direction. In other words
x, = R(n,9)s,. Let us then choose v, =» and
5. = x, = R(n,9)s,. The third axis is thus defined as
the one forming an orthonormal matrix.
Therefore the optimal solution is given by

A* = [xl n x X ”:][vl n, v X "r]T
amn

which extends the original TRIAD formulation to the
optimal attitude matrix computation.

Numerical tests on speed computation demon-
strate that the choice of having orthonormal triads (in
order of not loading the computation by adding the
inversion of the V-matrix), is not the best one.
Therefore, hereafter are listed two other possible
solution forms (the first of which is the fastest one
and therefore that selected for speed tests) which do
not use orthonormal triads

= R(":’gl)[sl ": sl X ns][vl ”v L4} X "v]T

A* { =[x x; x x xlv 0,0 x )]

=[enexnllenexn]'

(18)
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The general expression (for n unit-vectors pairs) of
the Wahba's cost function expressed in term of Euler
axis and angle is

o, = cos O tr[B]
+ (1 — cos ®)e"Be + sin ® fTe = max (19)

where
bll bIZ b|3
B= Zd.s.'”.'T = | by by by
! by by, by
<
by — by,
f=9by—by (20)
| b = b

The Euler axis constraint leads to the augmented cost
function

@1
By performing the derivative with respect the Euler
angle we obtain

dok
do

6¥ =0, — Ale'e — 1) = max

= —sin ® tr[B] + sin ® e"Be
+cosDfTe=0 (22)

and therefore

sin® = fTe
cos @ = tr{B] — e"Be, (23)
Let us take the derivative of equation (21) with
respect the Euler axis e
: *
dé’: = (I = cos D)(B" + B)e
+sin® f—2le=0 (24)

Premultiplying this equation by e' and keeping in
mind the constraint (ee=1) the Lagrangian
multiplier expression becomes

22 =2(1 — cos ®)e"Be + sin @ fTe (25)
therefore equation (24) may be written as
= {[2(1 — cos ®)e"Be + sin Of ")l
+ {(cos ® — 1}B" + B)} "' sin Of (26)

equation (26), along with equation (23), can be used
as the recursive equation of an iterative procedure,
whose steps are as follows: Euler axis e, starting point
choice, loop on the evaluation of ® by using
equation (23) and computation of the updated Euler
axis e, by using equation (26). The procedure end
is reached when cos ~'(e]e, . |) < tolerance.

NUMERICAL TESTS

All the performed tests are based on attitude data
random productions and the average outputs are
plotted. These tests are carried out on a 486-PC with
MATLAB software. Since EULER-2 and TRIAD-2
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Fig. 4. Speed test comparison (noise < |°, n = 2).

are optimal and deterministic, they have been tested
only in terms of computational speed.

Figure 4 shows, for a random noise less than 1°, the
computation time (using the cputime function) versus
the approximate cumulative number of floating point
operations (using the fops function), for the
algorithms EULER-2, TRIAD-2, EAA-123 [3],
SVD (4] and q-Method [5]. Owing to lack of time no
test comparison has been made with QUEST [2].

We outline here that, since the speed index based
on the flops function is independent of both the
hardware and the software used (which is not true for
the cputime function), it is more reliable.

Tests on EULER-n are referring to an angle
convergence condition between two consecutive
Euler axis iterations of 0.1 degrees. Although the
convergence of the method is not demonstrated, it
never failed during extensive tests. The iterations
number depends on the recursive equation and on the
€, starting point choice. The €, here suggested is that
evaluated by using EULER-2 for the best data (those
with the greatest weights o, a;).

Figure 5 plots the above mentioned speed indices
as function of the number of vector pairs(n =3, ...,
10), for six optimal algorithms and for a random
noise less than |°.

The cputime differences in performance between
SVD and the other methods are, however, unreal due
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Fig. 5. Speed test comparison (noise < 1°, n =3, ..., 10),
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Fig. 6. EULER-n accuracy test: Euler axis error.

to the use of MATLAB. In MA TLAB, the singular
value decomposition is highly optimized and
precompiled from native C code.

Figures 6 and 7 show the EULER-n accuracy with
respect the optimal solution, considering four data
noise levels (from 0.] up to 12.5°) and for a
convergence angle of 0.1°. Figure 8 plots the averages
of the associated number of iterations.

A better ¢, choice can be obtained by computing a
weighted Euler axis e,, evaluated from all the m Euler
axes e, obtained for the m combinations of
unit-vector pair couples (the number of combinations
of n objects chosen in pairs is m = n!/[(n — 2)127).
The liability of such computed Euler axes e, is a
function of the associated weights (a,, a)). Obviously
this relative liability increases with the product aa,.
Therefore the proposed e, choice satisfies the
following condition

o* = ) Bele, — iele, — I)=max (27
ko=
where
_ (¢ %4 . .
i __LEUa,aj (i#)) (28)

The solution of equation 27) is
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Fig. 7. EULER-n accuracy test: Euler angle error.
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Fig. 8. EULER-n accuracy test: iterations number.

Zkﬁkek

= (29)
|Zk Bie.l

€,

However, this choice is only apparently advantageous
because the iterations gain of using equation (29)
does not balance the e, involved heavier compu-
tational load, especially for a high value of n. It is not
necessary, however, to take into account all the m
different ¢,; limitation to involve only the best two or
three e, is therefore suggested.

CONCLUSION

In this paper two new optimal attitude determi-
nation methods, EULER-2 and EULER-n, have been
developed. EULER-2 computes the optimal Euler
axis and angle in a deterministic way, and its
application is restricted to cases where only two
unit-vectors pairs are available. This method is based

on the attitude matrix rotation meaning and on a
demonstrated co-planarity condition. By using this
last condition the extension of the existing TRIAD
algorithm to the optimal solution, getting TRIAD-2,
has also been possible. Finally, the EULER-n
algorithm, which computes the optimal Euler axis
and angle by an iterative technique, is developed. The
iterative procedure, which starts from the Euler axis
evaluated by EULER-2, converges to the optimal
solution with a precision better than 1/1000 degrees
(Figs 6 and 7) and with only one or two iterations
(Fig. 8). Numerical tests on computational speed are
performed for EULER-2, TRIAD-2 and EULER-n
(Figs 4 and 5). These plots show that all these three
new algorithms are quite suitable when a fast optimal
attitude determination is needed.
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