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ABSTRACT

Many spacecraft attitude determination methods use exactly two vector measurements. The two vectors are typically the unit
vector to the Sun and the Earth’s magnetic field vector for coarse “sun-mag” attitude determination or unit vectors to two
stars tracked by two star trackers for fine attitude determination. TRIAD, the earliest published algorithm for determining
spacecraft attitude from two vector measurements, has been widely used in both ground-based and onboard attitude
determination. Later attitude determination methods have been based on Wahba’s optimality criterion for n arbitrarily
weighted observations. The solution of Wahba’s problem is somewhat difficult in the general case, but there is a simple
closed-form solution in the two-observation case.  This solution reduces to the TRIAD solution for certain choices of
measurement weights. This paper presents and compares these algorithms as well as sub-optimal algorithms proposed by
Bar-Itzhack, Harman, and Reynolds. Some new results will be presented, but the paper is primarily a review and tutorial.

INTRODUCTION

Suppose that we have measured two unit vectors b1 and b2 in the spacecraft body frame. These can be the unit vectors to an
observed object like a star or the Sun, or some ambient vector field such as the Earth’s magnetic field. We consider only unit
vectors because the length of the vector has no information relevant to attitude determination. Each of these unit vectors thus
contains two independent scalar pieces of attitude information. The spacecraft attitude is represented by a 3×3 orthogonal
matrix A, i.e. A A IT = , the 3×3 identity matrix. The attitude matrix must also be proper, i.e., it must have unit determinant, so
it is an element of the three-parameter group SO(3). Euler’s Theorem states that the most general motion of a rigid body with
one fixed point is a rotation about some axis. This shows explicitly that SO(3) is a three-parameter group, since the three
parameters can be taken as the rotation angle and two parameters specifying a unit vector along the rotation axis. Thus two
unit vector measurements determine the attitude matrix, in general; in fact they overdetermine it.

It is also necessary to know the components of the two measured vectors r1 and r2 in some reference frame. The reference
frame is usually taken to be an inertial frame, but this is not necessary. One can use a rotating frame such as the frame
referenced to the orbit normal vector and the local vertical. The attitude matrix to be determined is the matrix that rotates
vectors from the reference frame to the spacecraft body frame. Thus we would like to find an attitude matrix such that

Ar b1 1= (1a)
and

Ar b2 2= . (1b)

This is not possible in general, however, for equation (1) implies that

b b r r r r r r r r1 2 1 2 1 2 1 2 1 2⋅ = ⋅ = = = ⋅( ) ( )A A A AT T T . (2)

This equality is true for error-free measurements, but is not generally true in the presence of measurement errors. It will be
seen in the following that all reasonable two-vector attitude determination schemes give the same estimate when equation (2)
is valid.

It is clear from simple counting arguments that the two independent scalar pieces of information contained in a single vector
measurement cannot determine the attitude uniquely. More concretely, if the attitude matrix A obeys equation (1a), then so
does the matrix R ARb r( , ) ( , )b r1 1φ φ , for any φb and φr , where R( , )e φ  denotes a rotation by angle φ about the axis e. This line
of argument also makes it clear that the attitude matrix is not uniquely determined if either the pair b1 and b2 or the pair r1

and r2 are parallel or antiparallel.

The earliest published algorithm for determining spacecraft attitude from two vector measurements was the TRIAD
algorithm1,2. This algorithm has been widely used in both ground-based and onboard3 attitude determination. The two vectors
are typically the unit vector to the Sun and the Earth’s magnetic field vector for coarse “sun-mag” attitude determination or



unit vectors to two stars tracked by two star trackers for fine attitude determination. Recent developments in star tracker
technology have produced star trackers that can track 5, 6, or even 50 stars at a time. For attitude determination using more
than two vectors, optimal estimators based on a loss function introduced by Wahba are appropriate4. However, Bronzenac
and Bender have shown that the n vectors from a small-field-of-view star tracker can be replaced by an average vector
without significant loss of precision5. With this approximation, the two star tracker case, even with multiple stars tracked in
each star tracker, can be treated as a two-vector-measurement problem.

With this motivation, we survey solutions to the two-vector measurement problem, beginning with TRIAD. We then consider
the optimal solution of Wahba’s problem. After this, we look at sub-optimal algorithms have been proposed by Bar-Itzhack
and Harman6 and by Reynolds7,8.  We compare the various algorithms for both accuracy and computational effort, and finally
present conclusions.

TRIAD

The TRIAD algorithm, introduced by Black in 19641,2, is based on the following idea. If we have an orthogonal right-handed
triad of vectors {v1, v2, v3} in the reference frame, and a corresponding triad {w1, w2, w3} in the spacecraft body frame, the
the attitude matrix

A T T T T= = + +[ ][ ]w w w v v v w v w v w v1 2 3 1 2 3 1 1 2 2 3 3M M M M (3)

will transform the vi to the wi by

A i iv w= ,  i = 1, 2, 3. (4)

The TRIAD algorithm forms the triad {v1, v2, v3} from r1 and r2, and the triad {w1, w2, w3} from b1 and b2. Incidentally,
TRIAD can be considered either as the word “triad” or as an acronym for “TRIaxial Attitude Determination.” The triads can
be formed in three convenient ways. First, it is useful to define the normalized cross products

r r r r r3 1 2 1 2≡ × ×( ) (5a)

and
b b b b b3 1 2 1 2≡ × ×( ) . (5b)

We note that r3 or b3 is undefined if the reference vectors or the observed vectors, respectively, are parallel or antiparallel.
This is the case noted above in which there is insufficient information to determine the attitude uniquely. If this is not the
case, two of the TRIAD attitude estimates are

AT
T T T

1 1 1 3 3 1 3 1 3≡ + + × ×b r b r b b r r( )( ) (6)
and

AT
T T T

2 2 2 3 3 2 3 2 3≡ + + × ×b r b r b b r r( )( ) . (7)

These estimates treat the two measurements unsymmetrically. In fact AT1 1 1r b=  and AT 2 2 2r b= , but

AT1 2 1 1 2 1 3 1 3 2 1 2 1 2 1 2 1 1 2 1 2r b r r b b r r r r r b b b b b r r b b≡ ⋅ + × × ⋅ = ⋅ + − ⋅ × ×( ) ( )[( ) ] ( ) [ ( ) ] (8)

and
AT 2 1 2 1 2 2 3 2 3 1 1 2 2 1 1 2 2 1 2 1 2r b r r b b r r r r r b b b b b r r b b≡ ⋅ + × × ⋅ = ⋅ + − ⋅ × ×( ) ( )[( ) ] ( ) [ ( ) ] . (9)

Thus the estimate AT1 emphasizes the first measurement and AT2 emphasizes the second. It’s not difficult to see, though, that
both AT1 and AT2 satisfy equations (1a) and (1b) if b b r r1 2 1 2⋅ = ⋅ .

The third form of TRIAD treats the two measurements symmetrically. We define the unit vectors

r r r r r r r r r+ ≡ + + = + + ⋅( ) ( ) ( )2 1 2 1 2 1 1 22 1 , (10)

r r r r r r r r r− ≡ − − = − − ⋅( ) ( ) ( )2 1 2 1 2 1 1 22 1 , (11)

and b+ and b– similarly. It is easy to see that r+ is perpendicular to r–, b+ is perpendicular to b–, and also that r3 = r+× r– and

b3 = b+× b–. Thus {r+, r–, r3} and {b+, b–, b3} are orthogonal triads, and the third TRIAD estimate is given by

AT
T T T

3 ≡ + + × ×+ + − − + − + −b r b r b b r r( )( ) . (12)



This estimate treats the two observations symmetrically, and gives AT 3 r b+ +=  and AT 3 r b− −= , but
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+ + − −( ) ( ) ( ) ( ) (13)

and

AT 3 2 2 2
1 2
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+ + − −( ) ( ) ( ) ( ) . (14)

Again, it’s not difficult to see that AT3 satisfies equations (1a) and (1b) if b b r r1 2 1 2⋅ = ⋅ .

All three TRIAD estimates satisfy ATi r b3 3= , for i = 1, 2, 3. From this and the above observations, it is clear that AT1, AT2, and
AT3 give identical estimates if equation (2) is valid, since they provide the same mapping of a basis {r1, r2, r3} in the reference
frame to a basis {b1, b2, b3} in the spacecraft body frame.

THE OPTIMAL SOLUTION

In 1965, Grace Wahba, then a graduate student at Stanford University on a summer job with IBM, proposed the following
problem4: Find the orthogonal matrix A with determinant +1 that minimizes the loss function

L A a Ai i ii
( ) ≡ −∑1

2

2
b r . (15)

where {bi} is a set of n unit vectors measured in a spacecraft’s body frame, {ri} are the corresponding unit vectors in a
reference frame, and {ai} are non-negative weights. We can rewrite equation (15), using the invariance of the trace under
cyclic permutations, as

L A a a A a ABi i ii i i
T

ii ii

T( ) ( )= +( ) − = ( ) −∑ ∑ ∑1
2

2 2
b r b r trace , (16)

where
B ai i i

T

i
≡ ∑ b r . (17)

It is obvious that the attitude matrix that minimizes the loss function is the proper orthogonal matrix that maximizes
trace(ABT ). Almost all solutions of Wahba’s problem are based on this observation. The original solutions solved for the
attitude matrix A directly, but most practical applications have been based on Davenport's q-method2,9, which solves for the
attitude quaternion10,11. Shuster’s QUEST algorithm, in particular, has been widely used12. Shuster showed a simplification in
the two-observation Wahba problem, but the first explicit closed-form solution was presented in reference 13.

We begin by noting that the matrix B has the singular value decomposition14-16

B USV T= , (18)
where U and V are orthogonal matrices, and S is diagonal;

S s s s= diag( , , )1 2 3 , (19)
with

s s s1 2 3 0≥ ≥ ≥ . (20)

In the two-observation case, it is clear from equation (17) that B has rank at most 2, and therefore

det B s s s= =1 2 3 0 . (21)

Equations (20) and (21) show that
s3 0= (22)

in the two-observation case. We shall take advantage of some resulting simplifications in this case. The general
n–observation case is treated in references 13 and 14.

Since s3 = 0, we are free to choose the sign of the last column of U and of V so that both of these matrices have positive
determinants. We shall assume that this is the case. Now

trace trace trace( ) ( ) ( )AB AVSU WS s W s WT T= = = +1 11 2 22 , (23)



where we have again used the invariance of the trace under cyclic permutations, and

W U AVT≡ . (24)

Now using the Euler axis/angle parameterization for W R= ( , )e φ  gives10,11

trace( ) [cos ( cos )] [cos ( cos )] cos [ ( ) ( )]AB s e s e s e s e s e s eT = + − + + − = + + − + −1 1
2

2 2
2

1 1
2

2 2
2

1 1
2

2 2
21 1 1 1ϕ ϕ ϕ ϕ ϕ . (25)

This is clearly maximized for cosφ = 1, which means that W = I. Thus the optimal attitude is given by

A UVopt
T≡ . (26)

Equation (25) shows that the minimum of trace(ABT ) is unique unless s2 = 0. The vanishing of s2 is the sign in the optimal
algorithm that the observations are not sufficient to determine the attitude. We shall see below that this is related to the
parallelism of the reference frame or body frame vectors.

The singular value decomposition is rather expensive computationally, so we look for a simpler way to compute Aopt. We note
that the classical adjoint, or adjugate, (the transposed matrix of cofactors) of BT is given in terms of the SVD by16

adj diagB U s s VT T= [ ( , , )]0 0 1 2 . (27)
We also note that

B B B U s s VT T= [ ( , , )]diag 1
3

2
3 0 . (28)

These allow us to write
( )λ λ λ λ2

1 2 1 2 1 2− − = =s s B B BB B s s UV s s AT T T
opt+ adj , (29)

where
λ ≡ + =s s ABT

1 2 trace( ) . (30)

We can compute the optimal attitude without actually performing the expensive SVD of B if we can find an alternative means
of computing the quantities appearing in equation (29). Direct computation from equation (17) gives

adj B a a a aT T T= × × = × ×1 2 1 2 1 2 1 2 1 2 1 2 3 3( )( )b b r r b b r r b r . (31)

Then we see from equation (27) that
s s B a aT

F1 2 1 2 1 2 1 2= adj = × ×b b r r , (32)

where M F  denotes the Frobenius (or Euclidean, or Schur, or Hilbert-Schmidt) norm15,16

M MMF
T≡ [ ( )] /trace 1 2 . (33)

We note from equation (32) that s2 = 0 if either of the cross products vanishes, as was mentioned above. A little effort is
required to show that

λ2
1
2

2
2

1 2
2

1 2 1 2 1 2 1
2

2
2

1 2 1 2 1 2 1 2 1 22 2 2= + + + × × + ⋅ ⋅ + × ×[ ]s s s s B a a a a a aF= = +b b r r b b r r b b r r( )( ) . (34)

In the two-observation case, λ is just the positive square root of the quantity on the right side of equation (34); finding λ in
the case of more than two observations requires solving a quartic equation. To complete the analytic derivation, we need to
evaluate

B B B a a aT
i j k i

i j k
i j j k k

T= ⋅ ⋅
=

∑ b r r b b r
, ,

( )( )
1

2

(35)

Combining all these intermediate results with much vector algebra gives the final equation for the optimal attitude estimate:

A a aopt
T T T T T≡ + × × + + × × +( )[ ( )( ) ] ( )[ ( )( ) ]1 1 1 1 3 1 3 2 2 2 2 3 2 3 3 3λ λb r b b r r b r b b r r b r . (36)

It is interesting to note that this expression has a unique limit as either a1 or a2 goes to zero, with λ equal to the non-zero
weight in the limit. This is true even though Wahba’s loss function of equation (15) does not have a unique minimum in
either limit, since it effectively only includes a single observation. In fact, the limit of the optimal estimate is the TRIAD
estimate  AT1 as a2 goes to zero, and AT2 as a1 goes to zero. It is also true, but more difficult to see, that the optimal estimate is
equal to AT3 for equal weights, a1 = a2.



The optimal estimate maps the two reference vectors as

A a A a A a aopt T Tr r r b r r b b b b b r r b b1 1 1 1 2 2 1 1 1 2 1 2 1 2 1 2 1 1 2 1 2= + = + ⋅ + − ⋅ × ×{ }( ) ( ) ( ) ( ) ( ) [ ( ) ]λ λ λ λ (37)

and
A a A a A a aopt T Tr r r b r r b b b b b r r b b2 1 1 2 2 2 2 2 2 1 1 2 2 1 1 2 2 1 2 1 2= + = + ⋅ + − ⋅ × ×{ }( ) ( ) ( ) ( ) ( ) [ ( ) ]λ λ λ λ . (38)

The main point to note about these equations is that the optimal attitude estimate maps both r1  and r2  into the plane spanned
by b1  and b2 . It’s clear from the loss function of equation (15) that this has to be the case; any out-of-plane component
would be non-optimal.

In the case that b b r r1 2 1 2⋅ = ⋅ , equation (34) for λ simplifies to λ = +a a1 2 , and the optimal estimate is

A a A a A a aopt T T= + +( ) ( )1 1 2 2 1 2 . (39)

Since AT1 and AT2 are equal in this case, we see that Aopt is equal to their common value, also.

Mortari has found an alternative representation of the closed-form solution to the two-observation Wahba problem that is
equivalent to the solution found here 17.

OPTIMIZED TRIAD

Bar-Itzhack and Harman6 have proposed using equation (39) even when b b r r1 2 1 2⋅ ≠ ⋅ . In general, this estimator is not
optimal, nor is the resulting attitude estimate exactly orthogonal. In order to produce a more nearly orthogonal attitude matrix,
they employ the first-order orthogonalization step

A a a a A a A a a a A a AOT T T T
T

T
T= + + + + +− −1

2 1 2
1

1 1 2 2 1 2 1 1 2 2
1[( ) ( ) ( )( ) ] (40)

They call the resulting estimator “Optimized TRIAD.” This estimate has the correct limits of AT1 and AT2 as a1 or a2 tends to
zero, respectively, but is not the same as AT3 for equal weights. It avoids the computation of λ that is required for the optimal
estimate, but requires the inverse of a 3×3 matrix.

There is an alternative way to orthogonalize the matrix computed by equation (37) when b b r r1 2 1 2⋅ ≠ ⋅ . This is to extract a
quaternion from the attitude matrix and then normalize the resulting quaternion. It is well known that the attitude matrix
computed from a normalized quaternion is guaranteed to be orthogonal10,11,18. The extraction of the quaternion requires a
square root, but it is often desirable to compute a quaternion for data transmission or storage, because it stores complete
attitude information in four components instead of the nine required for the attitude matrix.

DIRECT QUATERNION METHOD

All the methods considered so far compute the attitude matrix. If a quaternion is desired, it can be extracted from the attitude
matrix. However, it would be desirable to avoid this indirect and somewhat costly procedure. Reynolds has proposed a very
simple estimation algorithm that computes a quaternion directly7,8.

We first present some background information on quaternions to establish our conventions. A more complete discussion can
be found in reference 11. A quaternion q has a vector part q and a scalar part qs, which we write as

q qs= [ , ]q . (41)

This is similar to Reynolds’s notation except that we use square brackets rather than parentheses. A unit quaternion (i.e., a
quaternion with q 2 2 1+ =qs ) can be used to represent an attitude matrix, which rotates a vector by

A q q qs s( ) ( ) ( ) ( )v q v q v q q v= − + ⋅ − ×2 2
2 2 . (42)

We will follow Shuster’s convention for quaternion products11, writing

p q p q q p p qs s s s s s⊗ = ⊗ = + − × − ⋅[ , ] [ , ] [ , ]p q p q p q p q . (43)

This differs from the historical convention in the sign of the cross-product, and has the advantage that the order of quaternion
multiplication is the same as the order of attitude matrix multiplication:

A p q A p A q( ) ( ) ( )⊗ = . (44)



The quaternion corresponding to the rotation matrix R( , )e φ  is

q = 





e sin , cos
φ φ
2 2

. (45)

The derivation of the direct quaternion method begins with the observation that the quaternion that maps the reference vector
r1 into the body frame vector b1, using the minimum-angle rotation, is

qmin ( )
[ , ]1

1 1
1 1 1 1

1

2 1
1≡

+ ⋅
× + ⋅

b r
b r b r (46)

The most general matrix that maps r1 into b1 is R A q Rb r( , ) ( ) ( , )minb r1 1 1φ φ , where φb and φr are arbitrary angles of rotation
about b1 and r1, respectively. This general rotation has the quaternion representation

q b b r r
1

1 1
1 1 1 1 1 1

1 1
1 1 1 1 1 1

1

2 1 2 2
1

2 2

1

2 1 2 2
1

2

=
+ ⋅







⊗ × + ⋅ ⊗ 





=
+ ⋅

× + + + ⋅





( )
sin , cos [ , ] sin , cos

( )
cos ( ) sin ( ), ( ) cos

b r
b b r b r r

b r
b r b r b r

φ φ φ φ

φ φ φ
,,

(47)

where φ ≡ φb + φr . By parallel reasoning, the most general quaternion that maps r2 into b2 is given by

q2
2 2

2 2 2 2 2 2

1

2 1 2 2
1

2
=

+ ⋅
× + + + ⋅



( )

cos ( ) sin ( ), ( ) cos
b r

b r b r b r
ψ ψ ψ

(48)

for some angle ψ. The vector part of q1 is perpendicular to b1 – r1, and the vector part of q2 is perpendicular to b2 – r2. Based
on this observation, Reynolds proposed to look for a quaternion whose vector part is perpendicular to both b1 – r1 and b2 – r2.
The vector part of q1 will be perpendicular to b2 – r2 if we choose

cos( ) {[( ) ( )] [( ) ( )] } ( ) ( )/φ 2 1 1 2 2
2

1 1 2 2
2 1 2

1 1 2 2= ± × ⋅ − + + ⋅ − + ⋅ −−b r b r b r b r b r b r (49a)
and

sin( ) {[( ) ( )] [( ) ( )] } ( ) ( )/φ 2 1 1 2 2
2

1 1 2 2
2 1 2

1 1 2 2= × ⋅ − + + ⋅ − × ⋅ −−m b r b r b r b r b r b r . (49b)

Substituting this into equation (47) gives

q c1 1
1 2

1 1 2 2 1 1 2 2= − × − + ⋅ −− / [( ) ( ), ( ) ( )]b r b r b r b r , (50)
where c1 is the normalization factor

c1 1 1 2 2

2

1 1 2 2
2= − × − + + ⋅ −( ) ( ) [( ) ( )]b r b r b r b r . (51)

We have ignored the ambiguous overall sign of the quaternion, which has no significance, since the attitude matrix is a
homogeneous quadratic function of the quaternion. The appearance of the cross product ( ) ( )b r b r1 1 2 2− × −  is not at all
surprising, since this vector is guaranteed to be orthogonal to both b1 – r1 and b2 – r2.

Similarly, choosing ψ so that the vector part of q2 will be perpendicular to b1 – r1 gives

q c2 2
1 2

1 1 2 2 2 2 1 1= − × − + ⋅ −− / [( ) ( ), ( ) ( )]b r b r b r r b , (52)

The vector parts of q1 and q2 are equal up to the normalization constant. However, the scalar part of q1 is

q c cs1 1
1 2

1 1 2 2 1
1 2

2 1 1 2 1 2 1 2= + ⋅ − = ⋅ − ⋅ + ⋅ − ⋅− −/ /( ) ( ) [( ) ( )]b r b r b r b r b b r r (53)
and the scalar part of q2 is

q c cs2 2
1 2

2 2 1 1 2
1 2

2 1 1 2 1 2 1 2= + ⋅ − = ⋅ − ⋅ − ⋅ − ⋅− −/ /( ) ( ) [( ) ( )]b r r b b r b r b b r r . (54)

Thus, q1 and q2 are identical if b b r r1 2 1 2⋅ = ⋅ , and they are equal to

q c3 3
1 2

1 1 2 2 2 1 1 2≡ − × − ⋅ − ⋅− / [( ) ( ), ]b r b r b r b r . (55)

We see that q1, q2, and q3 all have the same rotation axis, and the rotation angle of q3 is intermediate between those of q1 and
q2. The quaternion q3, which treats the two measurements symmetrically, is the estimate preferred by Reynolds; but we will
also consider the asymmetrical estimates q1 and q2.



COMPARISON OF THE DIRECT QUATERNION METHOD WITH TRIAD

It would seem that the quaternion q1 should correspond to the TRIAD estimate AT1, q2 to AT2, and q3 to AT3. As evidence for
this, we note that the direct quaternion estimation methods have A q AT( )1 1 1 1 1r r b= = , A q AT( )2 2 2 2 2r r b= = , and q3

symmetric in the measurements, as AT3 is. However, we shall now show that this correspondence is not exact. The algebra in
the general case becomes rather messy, so we consider a simple example. Assume that we have two reference vectors

r r1 21 0 0 0 1 0= =[ , , ] [ , , ]T Tand (56)
and two observation vectors

b b1 20 0 1 0= =[ , , ] [cos , ,sin ]T Tand ϑ ϑ . (57)

We note that b b r r1 2 1 2⋅ = ⋅  only if sinϑ = 0, in which case all algorithms should give the same estimate.

We first compute the TRIAD estimates. Straightforward algebra results in

A A AT T T1 2 3

0 1 0

0 0 1

1 0 0

0

0 0 1

0

2 2 0

0 0 1

2 2 0

=
















=
−















=
−















,

sin cos

cos sin

,

sin( ) cos( )

cos( ) sin( )

ϑ ϑ

ϑ ϑ

ϑ ϑ

ϑ ϑ
and . (58)

We note that AT1 1 1r b= , AT 2 2 2r b= , AT 3r b+ += , and AT 3r b− −= , as expected. However,

A AT T1 2 2 2 1 1 2 2r b r b− = − = sin( )ϑ , (59a)

and
A AT T3 1 1 3 2 2 2 4r b r b− = − = sin( )ϑ . (59b)

These results are not surprising, since the vectors AT1 2r , AT 2 1r , AT 3 1r , and AT 3 2r  are all in the plane spanned by b1 and b2, as
we argued was necessary for an optimal estimator. For comparison with the direct quaternion method, it is interesting to
present the quaternions extracted from AT1, AT2, AT3:

qT1
1
2 1 1 1 1= [ , , , ], (60a)

qT 2
1
2 1 1 1 1= − + + −[ ]sin , sin , sin , sinϑ ϑ ϑ ϑ , (60b)

and

qT 3
1
2 1 2 1 2 1 2 1 2= − + + −[ ]sin( ), sin( ), sin( ), sin( )ϑ ϑ ϑ ϑ , (60c)

where we have written out the three components of the vector part of each quaternion explicitly.

The estimates produced by the direct quaternion method embodied in equations (50), (52), and (55) are

q1
1
2

1 21 1 1= + + +−( cos sin ) [ , cos sin , , cos sin ]/ϑ ϑ ϑ ϑ ϑ ϑ , (61a)

q2
1
2 1 1= + −[ , cos sin , , cos sin ]ϑ ϑ ϑ ϑ , (61b)

and
q3

2 1 24 2 1 1= + − +−( cos sin sin ) [ , cos sin , , cos ]/ϑ ϑ ϑ ϑ ϑ ϑ . (61c)

It is immediately apparent that the quaternions in equation (61) do not correspond to those in equation (60), unless sinϑ = 0
and all reasonable estimators agree. The attitude matrices computed from q1, q2, and q3 lead to further insights:

A q( )
cos sin

cos sin cos sin

cos sin cos sin

cos sin
1

1

1

0

0

1 0 0

=
+

+ −
+
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ϑ ϑ

ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ

ϑ ϑ
, (62a)

A q( )

cos sin cos sin

sin cos

cos sin cos sin
2

2

2

0=
−
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ϑ ϑ ϑ ϑ
ϑ ϑ
ϑ ϑ ϑ ϑ

, (62b)



and

A q( )
cos sin sin

sin ( cos sin ) ( cos sin ) sin (cos sin )
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We note that A q( )1 1 1r b=  and A q( )2 2 2r b= , as expected. However, in the general case,

1 21 2 2 2 1 1+ − = − =cos sin ( ) ( ) sinϑ ϑ ϑA q A qr b r b (63a)

and
A q A q( ) ( ) ( cos sin sin ) sin/

3 1 1 3 2 2
2 1 22 4 2r b r b− = − = + − −ϑ ϑ ϑ ϑ . (63b)

These residuals are all larger than the corresponding residuals in equation (59), because the vectors A q( )1 2r , A q( )2 1r ,
A q( )3 1r , and A q( )3 2r  all have components along the y axis in the body frame, which is perpendicular to the plane spanned by
b1 and b2. According to our previous argument, they can’t correspond to optimal estimates for any choice of weights. We
may be prepared to give up optimality for computational simplicity, however.

SINGULARITY OF THE DIRECT QUATERNION METHOD

The direct quaternion method has the disadvantage of being ill determined whenever both the vector part and the scalar part
of the estimated quaternion take the indeterminate value 0/0. We can easily see from equation (50) that q1 is undefined if
b2 = r2, which is when the axis of the attitude rotation is along r2 (and therefore is also along b2). Similarly, equation (52)
shows that q2 is undefined if b1 = r1, which is when the axis of the attitude rotation is along r1 and b1. These estimators are
identical in the absence of measurement noise, and we certainly don’t want to depend on measurement noise to avoid a
singular condition. Thus we see that the direct quaternion method is singular whenever the attitude rotation axis is along r1 or
r2 (or along b1 or b2). We will now show that the direct quaternion method is singular whenever the attitude rotation axis is in
the r1, r2 plane, which means that it is also in the b1, b2 plane.

If neither b1 – r1 nor b2 – r2 is zero, the vector part of the quaternion estimate vanishes if they are parallel, that is, if

b r b r2 2 1 1− = −β( ) (64)

for some scalar β. The vector b r b r2 2 1 1= + −β( )  has unit norm, which means that

1 1 2 2 12 1 1
2

1 1= + ⋅ − + − ⋅β βr b r b r( ) ( ) . (65)

Solving this for β (the zero root is not allowed since b 2 – r2 ≠ 0) and substituting into equation (64) gives

b r r b r b r b r2 2 2 1 1 1 1 1 11= − ⋅ − − ⋅[ ] −( ) ( ) ( ) . (66)

It is now straightforward to show that equation (2) is obeyed and that

b r b r2 1 1 2⋅ = ⋅ . (67)

Thus the vanishing of the vector part of the quaternion estimates of equations (50), (52), and (55) ensures that the scalar parts
vanish automatically.

Now let us see what these conditions imply about the attitude quaternion, which certainly exists even if it cannot be
computed by the direct quaternion method. Equation (42) requires

b q r q r q q ri s i i s iq q= − + ⋅ − ×( ) ( ) ( )2 2
2 2      for i = 1, 2. (68)

From this equation, we can see that
b r b r q r r2 1 1 2 1 24⋅ − ⋅ = ⋅ ×qs ( ) . (69)

This means that the scalar part of the direct quaternion estimate vanishes either if q is perpendicular to r r1 2× , which is to say
that it is in the r1, r2 plane, or else if qs is zero, which indicates a 180° rotation. We still have to investigate the requirement
that b1 – r1 is parallel to b2 – r2. If q is in the r1, r2 plane, we can write

q r r= +α α1 1 2 2 . (70)



With equation (68), this gives
b r r r r r r r r r1 1 2 2 1 1 2 1 1 2 1 2 2 1 22− = − + ⋅ + + ⋅ + ×α α α α α[ ( ) ( ) ( )]qs (71a)

and
b r r r r r r r r r2 2 1 2 1 1 2 1 1 2 1 2 2 1 22− = − − + ⋅ + + ⋅ + ×α α α α α[ ( ) ( ) ( )]qs . (71b)

These two vectors are clearly parallel. On the other hand, equation (68) for a 180° rotation gives

b r r q r q q q ri i i i i− = − + ⋅ = × ×2 2 2( ) ( ), (72)

and a straightforward but tedious calculation gives

( ) ( ) [ ( )]b r b r q r r q1 1 2 2 1 24− × − = ⋅ × . (73)

Thus the attitude rotation axis is required to be in the r1, r2 plane for the 180° rotation case to be singular, also. Thus we have
completely characterized the singular cases of the direct quaternion method as those cases for which the attitude rotation axis
is in the r1, r2 plane, and therefore in the b1, b2 plane, also.

The direct quaternion estimate method is singular if the attitude matrix is the identity, giving r1 = b1 and r2 = b2. We can say
that the rotation axis is in the r1, r2 plane in this case, also, because the rotation axis can be arbitrarily assigned for zero
rotation angle. Reynolds has proposed a method to avoid the singular condition in most cases, but it does not avoid the
singularity for attitude matrices close to the identity7,8.  The singular condition can be avoided in all cases by applying
Shuster’s method of sequential rotations10,19. This method solves for the attitude with respect to reference coordinate frames
rotated from the original frame by 180° about the x, y, or z coordinate axis. That is, we solve for the quaternions

q q q qi
i s i s i i i≡ ⊗ = ⊗ = − × − ⋅[ , ] [ , ] [ , ] [ , ]e q e e q e q e0 0        for i = 1, 2, 3, (74)

where ei is the unit vector along the ith coordinate axis. These rotations are easy to implement on the reference vectors, since
they simply change the signs of the components perpendicular to ei. Merely permuting and changing signs of the components
of the rotated quaternion recovers the unrotated quaternion. For example

q q q q q q q q qs s
1

1 2 3 3 2 11 0 0 0= ⊗ = − −[ , , , ] [ , , , ] [ , , , ]. (75)

The method of sequential rotations always avoids the singularity, since the 3×4 matrix

[ ]q e q e e q e e q eM M Mq q qs s s1 1 2 2 3 3− × − × − × (76)

always has rank three, as can be seen with some effort. Thus the rotation axes produced by the method of sequential rotations
span the entire three-dimensional space, which means that they cannot all be coplanar with r1 and r2.

To use Shuster’s rotations to avoid the singularity, we compute the reference vectors r1 and r2 in all four reference frames,
unrotated and rotated about the x, y, and z axes. We compute the magnitude squared of the cross product ( ) ( )b r b r1 1 2 2− × −
in each frame, and evaluate the quaternion in the frame where the cross product has the largest magnitude. The above
analysis shows that this should provide the most robust estimate. If the optimal reference frame is not the unrotated frame, we
recover the desired quaternion that transforms the unrotated reference frame to the spacecraft body frame by using equation
(75) or its equivalent for other rotations.

COMPUTATIONAL EFFORT

The speed comparison is based on the floating point operation (flop) counts in MATLAB implementations of the algorithms,
which have the advantage of being platform-independent. There are some caveats to make with regard to timing comparisons.
First, for ground computations, absolute speed isn’t all that important, since the estimation algorithm is only a part of the
overall attitude determination data processing effort. Speed was more important in the past, when thousands of attitude
solutions had to be computed by slower machines. Second, for real-time processing, as for an attitude control system onboard
a spacecraft, the longest time is more important than the average time, because the attitude control system processor has to
finish its task in a limited amount of time. This works against methods that may require sequential rotations.

Four methods for computing the attitude matrix are compared in Table 1: asymmetric TRIAD of equation (8), symmetric
TRIAD of equation (12), the optimal two-measurement estimator of equation (36), and Optimized TRIAD of equation (40).
An “asymmetric” estimator maps one of the two reference vectors into the corresponding observed vector exactly, throwing
all the measurement errors into the other vector. A “symmetric” estimator, on the other hand, treats the two measurements
symmetrically. The cost of using these four estimators to produce a quaternion is also presented. Every algorithm except



Optimized TRIAD computes the quaternion by extracting it from the corresponding attitude matrix, a process that costs 29
flops (see the Appendix). The quaternion output of Optimized TRIAD is cheaper than the attitude matrix output because it is
extracted from the estimate of equation (39) rather than from equation (40). In addition to these four estimators, three other
estimators are included for quaternion output only: the asymmetric direct quaternion estimator of equation (50), the
symmetric direct quaternion estimator of equation (55), and QUEST, for comparison12. The computational effort for the
direct quaternion estimation methods is given both with and without the use of rotations to avoid singular configurations. The
computational effort of QUEST does not include the cost of sequential rotations. No special efforts have been made to
achieve the most efficient possible implementation of any of the algorithms.

Table 1: Computational Effort of Estimation Algorithms in Flops

Algorithm A output q output

Asymmetric TRIAD 143 172

Symmetric TRIAD 166 195

Optimal Two-Measurement Estimator 265 294

Optimized TRIAD 335 273

Asymmetric Direct Quaternion —— 46

Asymmetric Direct Quaternion with Singularity Avoidance —— 108

Symmetric Direct Quaternion —— 50

Symmetric Direct Quaternion with Singularity Avoidance —— 112

QUEST —— 190

Several conclusions are apparent from these results. Symmetric estimators are a little more expensive than asymmetric
estimators, in general. Optimized TRIAD with the approximate matrix orthogonalization of equation (40) is significantly
more expensive than the optimal two-measurement estimator. If quaternion output is desired, Optimized TRIAD is slightly
less expensive than the optimal two-measurement estimator; but the savings are less than 10%. However, the optimal two-
measurement estimator and Optimized TRIAD (and even symmetric TRIAD) require more computational effort than QUEST
to produce a quaternion. Asymmetric TRIAD is only slightly less expensive than QUEST, but the direct quaternion
estimation methods developed by Reynolds are significantly faster. The implementation of rotations to avoid singularities in
the direct quaternion estimation methods more than doubles their computational cost, but they are faster than other methods
even with this modification. None of the three algorithms faster than QUEST is optimal, though; and QUEST also has the
advantage of being a general-purpose algorithm applicable to any number of measurements, which avoids the need to
develop and test a special-purpose two-observation algorithm.

ACCURACY

We will analyze two test scenarios, using the nine estimators with quaternion output that were used in the timing tests. The
first scenario simulates two star trackers with narrow fields of view and orthogonal boresights at [1, 0, 0]T and [0, 1, 0]T. We
shall assume that the first tracker is tracking five stars at
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and the second tracker is tracking three stars at
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We simulate 1000 test cases with random attitude matrices. We use the attitude matrices to map the eight observation vectors
to the reference frame, add Gaussian random noise with equal standard deviations of 6 arcseconds per axis to the reference
vectors, and then normalize them. The errors are unconventionally applied to the reference vectors rather than the observation
vectors so that equation (77) will remain valid in the presence of noise. The two-observation estimators use averages of the
multiple vectors observed by each tracker, as suggested by Bronzenac and Bender5. In this example the two averaged vectors
in the body frame are along the star tracker boresights. The optimal estimator weights for these estimators are proportional to
the inverse measurement variances, or to the number of vectors included in the average, so we use a2 = 0.6 a1 for the optimal
two-measurement estimator and Optimized TRIAD.

We treat the eight star measurements independently in QUEST, rather than averaging them. QUEST requires 316 flops for
eight measurements, but avoids the cost of averaging the vectors, which is 108 flops. Thus the computational effort of
QUEST should be taken as 208 flops for comparison with the other estimators in this eight-measurement example, making it
more expensive than the direct quaternion estimator and TRIAD, but faster than the optimal two-vector estimator and
Optimized TRIAD. In these tests, QUEST always used information about the true quaternion to determine the optimally
rotated reference frame for estimation, without the need to perform sequential rotations.

Table 2 shows that symmetric TRIAD, the optimal two-measurement estimator, and Optimized TRIAD perform almost as
well as QUEST. This justifies Bronzenac and Bender’s procedure of using average observation and measurement vectors for
the two star trackers. It should be noted, however, that the choice of orthogonal tracker boresights is optimal for this
approximation, and that symmetric TRIAD is the only one of these algorithms that is computationally less expensive than
QUEST, requiring 13 fewer flops. The symmetric direct quaternion estimator with singularity avoidance provides average
and maximum errors within 10% of those of the best estimators with less computational effort, though.

Table 2: Average (Maximum) Estimation Errors (arcseconds) for Star Tracker Scenario

Algorithm All Cases q3 1 2≥ q3 1 2<

Asymmetric TRIAD 4.6 (12.1) 4.5 (11.3) 4.7 (12.1)

Asymmetric Direct Quaternion 13.6 (2562) 5.2 (17.8) 20.1 (2562)

Asymmetric Direct Quaternion with Singularity Avoidance 5.1 (16.9) 5.1 (14.5) 5.1 (16.9)

Symmetric TRIAD 4.4 (12.2) 4.3 (11.6) 4.5 (12.2)

Symmetric Direct Quaternion 14.2 (4763) 4.7 (14.6) 21.6 (4763)

Symmetric Direct Quaternion with Singularity Avoidance 4.7 (12.9) 4.6 (12.1) 4.8 (12.9)

Optimized TRIAD 4.6 (12.1) 4.5 (11.3) 4.7 (12.1)

Optimal Two-Measurement Estimator 4.6 (12.1) 4.5 (11.3) 4.7 (12.1)

QUEST 4.4 (11.8) 4.3 (11.5) 4.4 (11.8)

The results also show that symmetric estimators perform slightly better than asymmetric estimators in this scenario. This was
expected, since the number of stars tracked in the two trackers and thus the measurement weights are nearly equal. A
symmetric estimator would be preferred in a real star tracker application, since there would be no way of predicting a priori
which tracker would view more stars.

Table 2 also shows inferior performance of the direct quaternion estimators without singularity avoidance. The performance
is not so bad in the 436 simulated cases with q3 1 2≥  as in the 564 cases with q3 1 2< . The latter are the cases in which we
would expect singularities to occur, since they have either small rotation angles or rotation axes close to the x-y plane, the b1,
b2 plane in this scenario. This shows the importance of avoiding singular cases in an application of these estimators. We note
that the performance with singularity avoidance, as well as the performance of all the other estimators, is independent of q3.

The second scenario that we consider is a sun-mag system, similar to that on SAMPEX3, assuming a digital sun sensor with
accuracy of 0.1° and a magnetometer with effective accuracy of 1°. We assume that the Sun is at the center of view of the
digital sun sensor at b1 = [1, 0, 0]T, but the orientation of the magnetic field vector is not fixed in the spacecraft body frame.
We simulate 1000 random attitude matrices and random magnetic field vector orientations, except that we do not allow the



magnetic field direction to be within 5° of the ± y axis. These are the cases with coaligned vectors that the SAMPEX onboard
attitude determination system rejects. We use the attitude matrices to map the Sun and magnetic field observation vectors to
the reference frame, add Gaussian random noise with standard deviations as specified above, and then normalize the
reference vectors. In this case the optimal estimator weights have a2 = 0.01 a1.

The estimation errors for this scenario are presented in Table 3. The roll (x axis) and pitch/yaw (root-sum-squared of y and z
axes) errors are presented separately, since the estimate of pitch and yaw provided by the digital sun sensor on the x axis is
more precise than the roll angle estimate provided by the magnetometer. We note from these tables that QUEST and the
optimal two-measurement estimator give identical errors, as they must since this scenario has two vector measurements.
Since the weight assigned to the magnetometer measurement is so much less than the weight of the sun sensor measurement,
Optimized TRIAD and asymmetric TRIAD give virtually the same results as the optimal estimators. The asymmetric direct
quaternion estimator with singularity avoidance provides equivalent pitch and yaw errors, and average and maximum roll
errors within 20% of those of the best estimators, with less computational effort.

Symmetric estimators are inferior to asymmetric estimators in the sun-mag scenario, since they allow the magnetometer
errors to corrupt the sun sensor determination of pitch and yaw. Table 3a shows that the direct quaternion estimation method
must be modified to provide acceptable roll estimation in the 551 cases with q ⊥ <1 2, where q ⊥ is the component of q
perpendicular to the b1, b2 plane. Table 3b shows that pitch and yaw estimates provided by the asymmetric direct quaternion
estimator are insensitive to these singular configurations, since this estimator maps r1 into b1 exactly.

Table 3a: Average (Maximum) Roll Estimation Errors (degrees) for Sun-Mag Test Case

Algorithm All Cases q ⊥ ≥ 1 2 q ⊥ <1 2

Asymmetric TRIAD 0.88 (3.06) 0.93 (2.92) 0.84 (3.06)

Asymmetric Direct Quaternion 2.82 (114) 1.07 (4.78) 4.24 (114)

Asymmetric Direct Quaternion with Singularity Avoidance 1.01 (3.58) 1.05 (3.36) 0.98 (3.58)

Symmetric TRIAD 0.88 (3.06) 0.93 (2.92) 0.84 (3.06)

Symmetric Direct Quaternion 1.97 (86.5) 0.98 (3.78) 2.77 (86.5)

Symmetric Direct Quaternion with Singularity Avoidance 0.92 (3.23) 0.96 (3.16) 0.89 (3.23)

Optimized TRIAD 0.88 (3.06) 0.93 (2.92) 0.84 (3.06)

Optimal Two-Measurement Estimator 0.88 (3.06) 0.93 (2.92) 0.84 (3.06)

QUEST 0.88 (3.06) 0.93 (2.92) 0.84 (3.06)

Table 3b: Average (Maximum) Pitch/Yaw Estimation Errors (degrees) for Sun-Mag Test Case

Algorithm All Cases q ⊥ ≥ 1 2 q ⊥ <1 2

Asymmetric TRIAD 0.13 (0.36) 0.13 (0.35) 0.13 (0.36)

Asymmetric Direct Quaternion 0.13 (0.36) 0.13 (0.35) 0.13 (0.36)

Asymmetric Direct Quaternion with Singularity Avoidance 0.13 (0.36) 0.13 (0.35) 0.13 (0.36)

Symmetric TRIAD 0.43 (1.60) 0.42 (1.54) 0.43 (1.60)

Symmetric Direct Quaternion 1.53 (96.3) 0.50 (1.91) 2.37 (96.3)

Symmetric Direct Quaternion with Singularity Avoidance 0.48 (1.92) 0.49 (1.91) 0.48 (1.92)

Optimized TRIAD 0.13 (0.37) 0.13 (0.35) 0.13 (0.37)

Optimal Two-Measurement Estimator 0.13 (0.37) 0.13 (0.35) 0.13 (0.37)

QUEST 0.13 (0.37) 0.13 (0.35) 0.13 (0.37)



CONCLUSIONS

We have analyzed four spacecraft attitude determination methods using exactly two vector measurements: the well-known
TRIAD algorithm, an optimal closed-form two-measurement of Wahba’s optimization problem, the Optimized TRIAD
algorithm of Bar-Itzhack and Harman, and the direct quaternion estimation method of Reynolds. These methods are
applicable to a variety of problems, including coarse “sun-mag” attitude estimation using the unit vector to the Sun and the
Earth’s magnetic field vector and precise estimation using unit vectors to stars tracked by two star trackers. For TRIAD and
the direct quaternion estimation method, we investigate both “asymmetric” forms that map one of the two reference vectors
into the corresponding observed vector exactly, and “symmetric” forms that distribute the errors symmetrically between the
two measurements. We also include the well-known QUEST algorithm for comparison,

The computational speed of the algorithms was compared using floating point operation (flop) counts in MATLAB. These
show that Optimized TRIAD and the optimal two-measurement estimator are more expensive than QUEST, which has the
additional advantage of being a general-purpose algorithm applicable to any number of measurements. The direct quaternion
estimation methods are significantly faster than QUEST, however. Both QUEST and the direct quaternion estimation
methods have the disadvantage of sometimes requiring special computations to avoid singular cases, but the direct quaternion
estimation methods are faster than any other methods even with these modifications.

We analyzed the accuracy of the estimators in two test scenarios. The first scenario simulated two star trackers with narrow
fields of view and orthogonal boresights, using average vectors for five stars in the first tracker and three in the second. The
second scenario simulated a digital sun sensor with accuracy of 0.1° and a magnetometer with effective accuracy of 1°.
Symmetric estimators outperformed asymmetric estimators in the first scenario, and asymmetric estimators were superior in
the second, as was expected. With this proviso, all the estimators had comparable errors. The one exception is that the direct
quaternion estimators had larger errors if not modified to avoid singularities, showing the need for these modifications.

This paper demonstrates the superiority of TRIAD, QUEST, and the direct quaternion estimation methods for attitude
estimation from two vector measurements.
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APPENDIX

The following MATLAB function was used to extract quaternions from attitude matrices10,11.

function q = dcm2quat(a)

% finds the quaternion representation of a direction cosine matrix a

% find maximum of trace or diagonal element of direction cosine matrix
tra    = trace(a);
[mx,i] = max([a(1,1) a(2,2) a(3,3) tra]);

% compute unnormalized quaternion
if i==1, q = [2*mx+1-tra;a(1,2)+a(2,1);a(1,3)+a(3,1);a(2,3)-a(3,2)]; end;
if i==2, q = [a(2,1)+a(1,2);2*mx+1-tra;a(2,3)+a(3,2);a(3,1)-a(1,3)]; end;
if i==3, q = [a(3,1)+a(1,3);a(3,2)+a(2,3);2*mx+1-tra;a(1,2)-a(2,1)]; end;
if i==4, q = [a(2,3)-a(3,2);a(3,1)-a(1,3);a(1,2)-a(2,1);1+tra];      end;

% normalize the quaternion
q = q/norm(q);


