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384 PROBLEMS AND SOLUTIONS

where
2"
pn(x) = _nT .

Solution by J. H. Van LinT (Technological University, Eindhoven, Nether

lands).
" We use the known formula for Euler’s constant
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It now follows from (1) and (2) that
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To obtain more terms of the asymptotic expansion, we just use more terms in the
expansion (1).

Problem 65-1, A Least Squares Estimate of Satellite Attitude, by GRACE WAHBA

(IBM—Federal Systems Division).

Given two sets of n points {vi, Vo, --+,V.}, and {w*, v -, v,*}, where
n = 2, find the rotation matrix M (i.e., the orthogonal matrix with determinant
-++1) which brings the first set into the best least squares coincidence with the
second. That is, find M which minimizes

n
,Zl: [ v;* — Mv; |

This problem has arisen in the estimation of the attitude of a satellite by using
direction cosines {v;*} of objects as observed in a satellite fixed frame of reference
and direction cosines {vi} of the same objects in a known frame of reference. M
is then a least squares estimate of the rotation matrix which carries the known
frame of reference into the satellite fixed frame of reference.

Solution by J. L. FArreLL and J. C. StueLPNAGEL (Westinghouse Defense

and Space Center).
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Let k denote the dimension of the column vectors vy, -« -, Va, Viy =+, Vo'
and let V and V* denote the two k X n matrices obtained by juxtaposing v1 ,
-+, V, and Wi, -+, v,*, respectively. '

For any orthogonal matrix M, define Q(M) as the sum of squares to be
minimized, so

QM) = ; | vi* = Mv;|® = tr (V* — MV)"(V* — MV),

where tr denotes the trace function and a superscript T denotes transposition.
Q(M) may be rewritten as

QM) = tr (V" = VIM"Y(V* — MV) = r V¥V*+ tr VIV — 2tr VIM V™.

Since the first two terms are independent of M, Q(M) is minimized by maximiz-
ing F(M) = tr VM"V*, which may be written as

F(M) = tr M"V*V".

It is a well-known fact that an arbitrary real square matrix A can be written
as a product UP, where U is orthogonal and P is symmetric and positive semi-
definite. Furthermore, if A is nonsingular, U is uniquely defined and P is positive
definite. If A is singular, U is not unique, but it may be taken to have deter-
minant 4+1. (The corresponding statement of the first result above for complex
A may be found in [1, §2.8] and the result for real A follows from it.)

Applying this result to A = V*V7, we have F(M) = tr M"UP. Since P is
symmetric, there is an orthogonal matrix N such that NPN” is a diagonal
matrix D, whose diagonal elements d, , - - -, d; are arranged in decreasing order.
All d; are nonnegative, since P is positive semidefinite. Now, letting X = NM”
-UN”, we obtain

k
F(M) = tt M"UN"DN = tt NM"UN'D = tr XD = Y dai;.
-]

Since F(M) is a linear function of the nonnegative numbers d;, - - -, di , its
maximum is attained when the diagonal elements of X attain their maximum
values. Because X is an orthogonal matrix, all elements of X are between —1
and 1, so F(M) is maximized when z;; = 1,z;; = 0, 7 # j.

Because det M is required to be +1, det X = det (NMTUN”) = (detN)*
-det M det U = det U. If det U = —1, then it is required that det X = —1,
and it is not hard to see that

= 0

x= (% —1)

is a solution (since d; = d; = --- = di). Letting X, be the matrix which maxi-
mizes F(M) (Xo = I or X, = (I'E)_l _01>, according as det U = +1 or —1),

X, = NM,"UN”, or M, = UN"X,"N is a rotation matrix which minimizes the
sum of squares Q(M). If V*V” is nonsingular, it is the unique rotation matrix
which does so.
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R. H. WessNER (Hughes Aircraft Company) in his solution points out that if
det A 5 0, then V*V* = A = UP,
U= (ANA"™, P = (474)",

where (ATA)" is the symmetric square root of A”A with positive eigenvalues,
and, hence, for det A > 0,

= ( VV*T)—I( VV*TV*VT)1I2-

J. R. VELMAN (Hughes Aircraft Company) in his solution demonstrates that
in the casedet A < 0, My = U(I — 2@) where G is any one-dimensional projection
satisfying GE; = @, where E; is the eigenspace of the smallest eigenvalue of P,
hence Farrel and Stuelpnagle’s solution in this case is unique if the smallest
eigenvalue of P has multiplicity one.

J. E. Brock (U. S. Naval Postgraduate School) solved the problem for
det V*V™ = 0 by differentiating

a= —tr [V'M™V* + VMV
with respect to each of the 9 elements of M and setting the results equal to 0. The
resulting equations turn out to be
MTAM™ = AT,

which implies that M"A is symmetric, (M"A)(M"A) = ATA, M"A is any
symmetric square root (A7A)"? of A”A, and M = (A")"(A"A)"". He then
gives an example in which the actual residual sum of squares is minimized by
taking the positive definite symmetric square root.

Also solved by R. DEssarpINs (Goddard Space Flight Center) and the pro-
poser.

Problem 65-2, A Third Order Differential Equation, by DonaLp E. Amos (Uni-
versity of Missouri).
The differential equation
[D*+ D + 3tly =0

arises in a problem describing the motion of a particle in a magnetic field.
(1) Identify the power series solutions in terms of special functions,
(2) evaluate the associated integral

[ =@ a,

and
(3) find asymptotic expressions for large ¢ in (1) and (2).



