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Introduction

A CCURACY and speed are two very important requirements
for attitude estimation algorithms. Usually, the attitude matrix

A is estimated using the n directions bi , observed by the attitude
sensorsand de� ned in a bodyframe, togetherwith the correspondent
directions ri , de� ned in a reference frame. In terms of the obtained
accuracy, the optimality criterion

L W (A) =
1

2

n

i = 1

a i k Ari ¡ bi k 2 = min (1)

introducedby Wahba1 in 1965, yields for A an accuracyupper limit
as well. Usually, the a i in Eq. (1) represents the relative weight
(

i
a i = 1, i = 1 ¡ n) associated with the i th observed direction

error. The adoption of a i = 1/ r 2
i , where r i is the standarddeviation

associatedwith the bi direction precision, transforms the minimiza-
tion of L W (A) into a maximum likelihood problem.2,3

The � rst direct solution of the Wahba problem was provided
in Ref. 4, and many other closed-form solutions were proposed
later.5 ¡ 13 The breakthrough in the development of the modern
fast optimal attitude determination algorithms was given by Paul
Davenport,who introduced the q-Method algorithm,5,6 from which
many other methods,7 ¡ 13 satisfying Wahba’s optimality criterion,
were derived. The q-Method demonstrates that the optimal quater-
nion qopt is the eigenvector associated with the greatest eigenvalue
of the 4 £ 4 symmetric matrix K , that is,

K qopt = k maxqopt (2)

where

K =
B + BT ¡ tr[B]I3 £ 3 z

zT tr[B]
(3)

B = i a i bi r T
i is the attitude pro� le matrix, I3 £ 3 the 3 £ 3 unit

matrix, and z is the vector z = i a i bi £ ri ={B(2, 3) ¡ B(3, 2),
B(3, 1) ¡ B(1, 3), B(1, 2) ¡ B(2, 1)}T . Equation (2) provides the
optimal attitude by using very robust existing algorithms, but re-
quires the computation of all of the eigenvalues-eigenvectors.This
cumbersome aspect, which slows down the algorithm speed, was
solved with the QUEST algorithm,7 which has shown a way to eval-
uate only k max and the associated eigenvector qopt. QUEST evalu-
ates k max usingone/two Newton–Raphson iterationsto the K -matrix
characteristic equation and, then, qopt is estimated by applying the
Cayley–Hamilton theorem together with the Gibbs vector. The use
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of the Gibbs vector introduces a singularity (for principal angle
close to p ), which is then solved by the technique of sequential
rotations.7

The subsequently devised algorithms8 ¡ 13 were mainly aimed to
search improvement in the computational speed area. In fact, a
faster attitude estimation method presents the advantage of allow-
ing the control system to achieve the attitude informationat a higher
rate. Moreover, because all of these algorithms fully comply with
Wahba’s optimality criterion, they compute the same attitude ma-
trix; thus, theyare equivalentin accuracyanddifferfromoneanother
only in terms of computational speed.

This Note presents the Second Estimator of the Optimal Quater-
nion (ESOQ2),13 which represents a further speed improvement,
demonstrated by numerical speed tests, in the area of the optimal
attitude estimation algorithms.

Eigenvalue Computation
The k max computation can be accomplished in many ways that

present different characteristics. k max can be computed in a closed
form,10,13 by using the well-known solution of the quartic algebraic
equation associated with the characteristic polynomial of the K
matrix

k 4 + a k 3 + b k 2 + c k + d = 0 (4)

where a = tr[K ]= 0, b = ¡ 2(tr[B]) + tr[adj(B + BT )] ¡ zT z, c =
¡ tr[adj(K )], and d = det(K ). In particular, when n = 2 then k max

can be computed with the simple closed-form expression

k max =
1

2
2

p
d ¡ b + ¡ 2

p
d ¡ b (5)

Alternatively, k max can be computed by one/two Newton–Raphson
iterations

k i + 1 = k i ¡
k 4

i + b k 2
i + c k i + d

4k 3
i + 2b k i + c

(6)

with k 0 = i
a i as starting point. The most robust way to com-

pute eigenvalues is to use matrix factorization, such as the QR and
the singular value decompositions.However, the gain in robustness
(which imply a better numerical stability of the algorithm) is coun-
terbalanced by a heavier required computational load, which slows
down the algorithm.Moreover, a high precisionmethod to compute
k max is unnecessarybecauseits value rangeis nearlynegligibleabout
k max = k 0 (Ref. 7). ESOQ2 computes k max with Eq. (5) when n = 2,
or with one Newton–Raphson iteration, using Eq. (6). Reference 3
shows that, for a star tracker scenario (all a i are equal), no itera-
tion, that is, k max = k 0, provides an acceptable accuracy. Anyway,
numerical stability is demonstrated by the accuracy tests, which
compare the obtained attitude accuracy against that provided using
the q-Method approach, for input data slightly in error.

Quaternion Computation
ESOQ110 evaluates the optimal quaternion by computing the

maximum modulus vector cross product among four cross-product
vectors de� ned in the four-dimensional space. To do this, ESOQ1
implies the computation of seven determinants of 3 £ 3 matrices,
whereas ESOQ2 achieves the solution by reducing the size from
four to three (by replacing the quaternionwith the principalaxis and
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angle), which implies the computationof � ve determinantsof 2 £ 2
matrices. As clearly shown later on, the introduced singularity (the
principal axis is not de� ned for a U = 0 principal angle) will never
occur because the sequential rotation assuring p /2 · U ·3p /2 can
be identi� ed in advance directly from the input B matrix.

The quaternion can be expressed in terms of the principal axis
and angle14

qT = {eT sin( U / 2), cos( U / 2)} (7)

By this substitution Eq. (2) can be split as follows:

Se sin( U / 2) + z cos( U / 2) = 0

zT e sin( U /2) + (tr[B] ¡ k max ) cos( U /2) = 0 (8)

where S = B + BT ¡ (tr[B] + k max)I3 £ 3 . It is possible to eliminate
the principal angle U from Eq. (8); thus the key equation for the
optimal principal axis

(tr[B] ¡ k max )S ¡ zzT e = Me = 0 (9)

is obtained, where the 3 £ 3 symmetric matrix M is introduced.
Equation (9) states that all of the row/column vectors of M are
perpendicular to e. Therefore, the optimal principal axis can eas-
ily be evaluated by a simple vector cross product between two
rows/columns of matrix M . However, this way to compute e en-
tails the problemof which vectors should be selected for computing
it with the highest robustness. To this end, let M be as

M = M T = [m1 m2 m3] =

ma m x m y

m x mb mz

m y m z mc

(10)

then, three different choices will be available:

e1 = m2 £ m3

= mbm c ¡ m2
z , m y mz ¡ m x mc , m x m z ¡ m y mb

T

e2 = m3 £ m1

= m ym z ¡ m x mc , mam c ¡ m2
y , m x m y ¡ m zma

T

e3 = m1 £ m2

= m x m z ¡ m y mb , m x m y ¡ m zma , mamb ¡ m2
x

T
(11)

All of the ei providedin Eq. (11) areparallel,and, therefore,they dif-
fer only in modulus.To evaluatethe optimalprincipalaxis with max-
imum robustness,it is necessaryto identify the ei with greatestmod-
ulus. To do that, Eq. (11) allows us to write ei (k) = ek (i ), while the
conditionof parallelek allows us to write j ek( j )j = n ki j ei ( j ) j , where
n ki = k ek k / k ei k , and j = 1–3. Therefore, from the precedingit turns
out j ek (k)j = n ki j ei (k) j = n ki j ek (i ) j = n 2

ki j ei (i ) j , which demonstrates
that the farthest-from-zero and the closest-to-zero elements ek (i )
have k = i . Let k be the index associated with the farthest element,
that is, ek (k); then the highest-modulus vector cross product is ek ,
as provided by Eq. (11). The second equation of Eq. (8) allows us
to write

zT e = h cos( U /2), ( k max ¡ tr[B]) = h sin( U / 2) (12)

where h is an unknown constant. Thus, the direction of the optimal
quaternion is obtained by normalizing

q =
( k max ¡ tr[B])ek

zT ek

(13)

that is, qopt = q /
p

(qT q ).
When approaching the singularity condition, the optimal prin-

cipal axis, evaluated as a cross product, would be affected by an
error, which increasesas U ! 0. This error will affect the � rst three

Table 1 Sequential rotation table

Rotation B̄ matrix Ā matrix
matrix (B = B̄ R) (A = ĀR) qT quaternion

R(c1, p ) B̄1 = Ā1 = {q̄4, ¡ q̄3 , q̄2, ¡ q̄1}T

[b1 , ¡ b2, ¡ b3] [a1 , ¡ a2, ¡ a3]
R(c2, p ) B̄2 = Ā2 = {q̄3, q̄4 , ¡ q̄1, ¡ q̄2}T

[ ¡ b1 , b2, ¡ b3] [ ¡ a1 , a2, ¡ a3]
R(c3, p ) B̄3 = Ā3 = { ¡ q̄2 , q̄1 , q̄4, ¡ q̄3}T

[ ¡ b1 , ¡ b2, b3] [ ¡ a1 , ¡ a2, a3]

elements of the quaternion, elements that are also multiplied by
sin( U /2), which is actually small. This multiplication, therefore,
represents a compensationeffect analyzed in Ref. 13. However, the
computationof the principalaxis by means of a vector crossproduct
fails in two limit cases for the M row vectors: 1) when they become
parallel, which corresponds to the intrinsic unsolvable case of par-
allel observed vectors (case that cannot be solved by any attitude
estimationalgorithm), and 2) when they become zero,which occurs
when U ! 0. The latter case, which represents the singularity con-
dition introduced by the method, is easily avoided as explained in
the next section.

How to Avoid Singularity
The Shuster’s sequential rotation technique7 states that if the n

unit vector pairs (bi , ri ) imply the attitude matrix A, then n pairs
(bi , r̄i ), where r̄i = Rri and R is any rotational matrix, imply the
attitude matrix Ā = ART . Thus, if the (bi , ri ) data set implies a sin-
gularity for the application method, the (bi , r̄i ) data set should not,
in general, necessarily imply a singularity, too. Hence, the method
evaluates the attitude Ā by using the rotated unit vectors r̄i (in place
of the ri ) and then computes the searched optimal attitude matrix
as A = ĀR. Particular attention is given to those matrices R, which
rotate about one of the coordinate axes c1, c2 , and c3 by a p angle.
Let these matrices be indicatedas R(c1 , p ), R(c2 , p ), and R(c3, p ).
With respect to others, the use of these matrices does not involve
any extra computationalloads, but sign changes and cross displace-
ments, only. Table 1 shows the relationships between the attitude
pro� le matrix B, the attitude A, and the quaternion q , with the as-
sociated rotated quantities B̄ , Ā, and q̄ .

The importantpropertytr[B] ¸ cos U (which is notdemonstrated
here) allows us to establish if a sequential rotation is needed.3 In
fact, when tr[B] < cos( U min ), where U min is the minimum accept-
able principal angle (which assures to be far enough from singular-
ity), then no sequential rotation is needed.When tr[B] ¸ cos( U min),
then ESOQ2 checks if a p sequential rotation about the c1 co-
ordinate axis implies a principal angle ¯U > U min by checking if
tr[B̄1] = B(1, 1) ¡ B(2, 2) ¡ B(3, 3) < cos U min. Similarly, if even
this check fails, then it is possibleto investigate,in sequence,if the p
sequential rotation about the c2 axis is such that tr[ B̄2]= B(2, 2) ¡
B(1, 1) ¡ B(3, 3) < cos U min and also if the p sequential rota-
tion should be accomplished about the c3 coordinate axis by
checking if tr[B̄3] = B(3, 3) ¡ B(1, 1) ¡ B(2, 2) < cos U min. It is
not possible that all of the sequential rotation checks fail for
U min · p /2. The precedingprocedureallows us to ensure the condi-
tion p / 2 · ¯U ·3 p / 2, just by setting U min = p /2 (at least, one of the
elements{tr[B̄1] tr[B̄2] tr[ B̄3] tr[B]}must be negative).3 To ensure
p / 2 · ¯U ·3p /2, if the negative element is the kth (k = 1–3), then
the p sequential rotation about the ck axis is needed; otherwise, no
rotation can be accomplished.

Unlike QUEST,7 for which the sequential rotations technique
couldevenbe appliedthree times,ESOQ2 may needit onlyone time.
Moreover, because the condition p /2 · ¯U ·3p /2 is satis� ed, the
ESOQ2 algorithmalso works near the most robustposition ( U = p )
to estimate the principal axis.

Speed Tests
Reference 10 has already demonstrated that ESOQ1 was the

fastest existing optimal attitude estimation algorithm. Figure 1
shows an overall speed test comparison between ESOQ2 and
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Fig. 1 Speed tests results.

Fig. 2 Accuracy tests results.

ESOQ1, using either the four-dimensional vector cross product
ESOQ1(X) or the 3 £ 3 matrix invertion ESOQ1(I), and with one
or zero Newton–Raphson iterations to compute k max . For the tests
performed in Fig. 1, MATLAB® software has been used. The data
set, which consists of the n data (a i , bi , ri ) as well as the attitude
matrix T , is N = 1000 times randomly produced, and the range of
vector pairs n goes from 2 to 8. The sensors’precision are here sim-
ulated with uniform error distribution by rotating the unit vectors
T ri about a random axis orthogonal to T ri by a random angle bi

linearly correlated to the weight a i and not greater than 0.5 deg.
The index used to evaluate the algorithmcomputationalspeed is the
MATLAB15 function, which allows the evaluation of the approxi-
mate cumulative number of � oating point operations. This index,
unlike the consumedcomputationaltime, is independentof both the
software and the hardware used.

Figure 1 shows ESOQ2 with a constant speed gain with respect
to ESOQ1, for any number of the observed vectors considered.
This gain ranges from 55–60 up to 60–65 � oating point operations,
when one or zero iteration is used to evaluate k max , respectively.
This result makes ESOQ2 the most suitable optimal attitude es-
timation algorithm when the highest attitude estimation speed is
required.

Accuracy Tests
Let T and A be the true and the estimated attitude matrices.

The error e , associated with an observed direction b, is the angle
between T T b and AT b. This angle, which is a function of the di-
rection b, has a spatial distributionwith a maximum value provided
by cos e max = (tr[T AT ] ¡ 1)/2. With the same attitude data set used
for the speed tests, Fig. 2 plots the greatest values of e max obtained
in N = 1000 tests for each number of the observed vectors, and for
both the estimated matrices provided by q-Method and ESOQ2.

Note that q-Method computes k max with a robust matrix factoriza-
tion method,and ESOQ2 just uses k max = i

a i = 1 (no iterations).
The differencesbetween the two obtainedcurves, which practically
overlap each other, is actually very small (about 10 ¡ 3 deg).

Conclusions
The ESOQ2 algorithmfor a fast optimal estimation of the space-

craft attitude is presented here. ESOQ2 starts from the q-Method
solution equation and, therefore, requires the computation of the
maximum eigenvalue k max of a 4 £ 4 symmetric matrix K . k max is
evaluated with the closed-form solution if the observed directions
are only two while, otherwise, with one Newton–Raphson iteration
applied to the characteristic equation of matrix K .

ESOQ2 computes the optimal quaternion through the evaluation
of the optimal principal axis. The introduced singularity is fully
avoided using only one sequential rotation. It is demonstrated that
the principal axis is the eigenvector associated with the zero eigen-
value of the 3 £ 3 symmetric matrix M . This allows its computation
by means of a vector cross product between two row/column vec-
tors of matrix M . Then, the optimal quaternion is straightforwardly
evaluated.

Numerical tests show ESOQ2 as the fastest among the nonsin-
gular and optimal attitude estimation algorithms. The robustnessof
the method is also demonstrated by numerical accuracy tests. This
makes it the most suitable attitude estimation algorithm when fast
spacecraft attitude estimation is required.
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Improving Time-Optimal Maneuvers
of Two-Link Robotic Manipulators
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I. Introduction

T HIS Note discusses in detail numerical results of a parametric
study for rest-to-rest time-optimalmaneuversof rigid two-link

robotics manipulators. The problem of minimizing the time of pla-
nar maneuvers in terms of control and structure was considered
parametrically.First, the time-optimal control strategywas applied.
This strategy led to a bang-bang control in which the motors oper-
ated with the maximum torques changing directions at the switch
time. The solutions were obtained by directly using Pontryagin’s
minimum principle (PMP). The analysis was then repeated for dif-
ferent lengths of particular links and for different torques applied
at particular joints. The total length of the manipulator and the re-
sultant torques generated by the shoulder and elbow motors were
kept constant. For the numerical calculations, the set of data char-
acterizing the IBM 7535 B 04 robot discussed in Refs. 1 and 2 was
adapted.

II. Time-Optimal Control of Two-Link
Robotic Manipulators

The equations derived from PMP and the corresponding bound-
ary conditionsform a two-point boundary value problem (TPBVP).
Here we present the solutions generated by a numerical proce-
dure that combines the forward-backwardmethod with the shooting
method to directly solve the TPBVP.3 The procedure that is capable
of determining the states, the costates, and the switching functions
with a high numerical accuracy was discussed in more detail in
Ref. 4. The procedure was used by the authors in Ref. 5 examine
the effects of orientationof the plane of motion on the time-optimal
maneuvers in the gravitational � eld. That work is extended here to
include the effects of the links and the torque ratios.

Maneuvers of a two-link robotics manipulator are considered in
plane y, z as shown in Fig. 1. Mass moments of inertia of the links
with respect to their centers of mass, located at lc1 and lc2 , respec-
tively, are I1 and I2. The states are x1 = } 1 , x2 = Ç} 1 , x3 = } 2 , and
x4 = Ç} 2 . The manipulator is driven by motors installed at the shoul-
der and elbow joints and generating torques u1 and u2, respectively.

In terms of the states xi , i = 1, . . . , 4, the equation of motion of
the manipulator can be obtained in the form

Çx(t ) = A(x ) + C(x )u(t ) (1)

where A and C are the vector and the matrix of nonlinear functions
of states (see Ref. 4), and u is the vector of controls, represented
here by torques u1 and u2. The control torques are bounded as

U ¡
i · ui (t ) · U +

i (2)

For the time-optimal control problem, the state departing from
the initial conditions, x(0) = x0 , must reach the � nal conditions,
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Fig. 1 Planar two-link robotics manipulator.

x(t f ) = x f , in a minimum time that is t f ! min. After introducing
the costates p(t ) and applyingPontryagin’s Minimum Principle, the
optimal solution must satisfy the necessary conditions

Çx =
@H

@p
Çp = ¡

@H

@x
(3)

where the Hamiltonian H (x , u, p) = 1 + pT [A(x ) + C(x )u(t )]
u! min. The control torques have the form of a bang-bang control

u i =
U +

i for G i < 0

U ¡
i for G i > 0

(4)

where G i = p j C ji is the switch function corresponding to the con-
trol ui , and C ji are the components of i th column of matrix C .
For the time-optimal trajectory, the Hamiltonian must satisfy the
condition that H (x , u, p) = 0 for all t .

The solution of four state and four costate equations must satisfy
eight initial and � nal conditions imposed on the state only. This
TPBVP is solved numericallyfor assumed valuesof x0, x f , U

¡
i , and

U +
i using the procedure discussed in Refs. 3 and 4. Any solution

that meets PMP for the manipulator as de� ned earlier is referred to
as time-optimal. Here we concentrate on discussing some of these
solutions.

III. Simulation Results
In the analysis presented, it is assumed that the links are

made of cylindrical uniform bars of diameters di for which Ii =
m i (l2

i / 12 + d2
i /16). Additionally, for the purpose of this analysis,

it is assumed that the total length of the manipulator L t = l1 + l2

and the total torque Ut = U1 + U2 are constant.The calculationsare
performed for different length and different torque ratios de� ned by

RL = l1 / l2 RU = U1 / U2 (5)

If L t = 0.65 m, RL = 1.6 and Ut = 34 Nm, RU = 2.7778, and for
d1 = d2 = 0.10987 m the followingparameters are identical to those
given in Refs. 1 and 2 for the IBM 7535 B 04 robot:

l1 = 2lc1 = 0.4 m U ¨
1 = ¨ 25 Nm I1 = 0.4167393 kg¢ m2

l2 = 2lc2 = 0.25 m U ¨
2 = ¨ 9 Nm I2 = 0.1102435 kg¢ m2

m1 = 29.58 kg m2 = 18.49 kg (6)

In terms of the states, the initial and the � nal conditions for the
rest-to-rest maneuvers from straight-to-straight con� gurations are
given as x(0) = [0.0 0.0 0.0 0.0]T , x(t f ) = [} 1 f 0.0 0.0 0.0]T ,
where } 1 f is � nal maneuver angle.

A. Effects of the Length Ratio
Theoretically, the manipulator can access any point within the

circle of radius L t only if RL = 1. Therefore, in order to improve
accessibility, the length ratio for the robot analyzed in the previous


