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Attitude Determination Using
Vector Observations: A Fast
Optimal Matrix Algorithm

F. Landis Markley'

Abstract

The attitude matrix minimizing Wahba’s loss function is computed directly by a method
that is either faster or more robust than any previously known algorithm for finding this
optimal estimate. Analysis of the special case of two vector observations identifies those
cases for which the TRIAD or algebraic method minimizes Wahba’s loss function. The
new method also provides an estimate of the attitude error covariance matrix, including
an especially convenient representation of the two-observation covariance matrix.

Introduction

In 1965, Wahba posed the problem of finding the proper orthogonal matrix A
that minimizes the non-negative loss function [1]

1 n
L) = 5 Salb; - 4r]} M

where the unit vectors r; are representations in a reference frame of the directions
to some observed objects, the b; are the unit vector representations of the corre-
sponding observations in the spacecraft body frame, the a; are positive weights,
and n is the number of observations. The motivation for this loss function is that
if the vectors are error-free and the true attitude matrix A, is assumed to be the
same for all the measurements, then b; is equal to A...r; for all i and the loss
function is equal to zero for 4 equal to A ..

Attitude determination algorithms based on minimizing this loss function have
been used for many years [2-6]. The original solutions to Wahba’s problem solved
for the spacecraft attitude matrix directly [2], but most practical applications have
been based on Davenport’s g-method [3-5], which solves for the quaternion repre-
senting the attitude matrix. In this paper, we present a new method that solves for
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the attitude matrix directly, as well as the covariance matrix, and which is com-
petitive with the well known QUEST algorithm [6] in speed. Examination of test
cases uncovers some where the new algorithm is more robust than QUEST.
Analysis of the special case of two observations serves to relate this method to
the TRIAD or algebraic method [5—7], and also leads to a convenient representa-
tion of the two-observation covariance matrix.

Statement of the Problem

Simple matrix manipulations transform the loss function into

L(A) = Ay — tr(ABT) , (2)
where
Ag = Eai s 3)
i=1
B = EaibiriT, (4)

i=1

tr denotes the trace, and the superscript T denotes the matrix transpose. Thus
Wahba’s problem is equivalent to the problem of finding the proper orthogonal
matrix A that maximizes the trace of the matrix product ABT. The weights are
often chosen so that A = 1, but this is not always the most convenient choice, as
will be discussed below.

This optimization problem has an interesting relation to a matrix norm. The
Euclidean norm (also known as the Schur, Frobenius, or Hilbert-Schmidt norm)
is defined for a general real matrix M by [8, 9]

IMIP = 2 M} = tr(MMT), (5)

where the sum is over all the matrix elements. The assumed orthogonality of A
and properties of the trace give

l4 — BIf = tr[(4 — B)(4 — B)"] = tr I — 2tr(AB") + ||B|, 6)

where [ is the 3 X 3 identity matrix. The orthogonal matrix 4 that maximizes
tr(4BT) minimizes this norm, so Wahba’s problem is also equivalent to the prob-
lem of finding the proper orthogonal matrix A4 that is closest to B in the Euclidean
norm [10]. It is also related to the problem of finding a “procrustean transforma-
tion” of B [8,9]. ,

The matrix B can be shown to have the decomposition [11]

B = U, diag[S,, Sz, S5]V'T (7)

where U, and V. are proper orthogonal matrices; diag[. . .] denotes a matrix with
the indicated elements on the main diagonal and zeros elsewhere; and S, S, and
IS5/, the singular values of B, obey the inequalities

S51= 8= 53] . (8)
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The optimal attitude estimate is given in terms of these matrices by [11]
Ao = U VY. 9)

Equation (7) differs from the singular value decomposition (SVD) [8,9] in that
U, and V, are required to have positive determinants. In reference [11], S; was
denoted by ds3, where d = *1 and s; = 0.

The SVD provides a robust method for computing the matrices U, and V., and
thus the optimal attitude estimate, but it is not very efficient [11). The purpose of
this paper is to present a more efficient method to estimate the attitude.

Computation of the Attitude Matrix

The decomposition of equation (7) allows the Euclidean norm, determinant,
and adjoint of B to be written as

IBI? = S* + S + S%, (10)
det B = 5,553, (11)

and
adj BT = U, diag[$,S3, 555,, S, S:]V'T. (12)

These quantities, as well as the product
BB'B = U, diag[S?, 53, S3]V+ (13)

can also be evaluated without performing the singular value decomposition, but
the representations in terms of the singular values are useful in deriving the
matrix identities in this paper. In particular, they can be used to show that the
optimal attitude estimate is given by

Aop = [(x + |BIF)B + A adj B — BB"B|/, (14)
where
k=58 + 88 + 85, (15)
A=S+ 85+ 8S;, (16)
and
L= (S + S)(S5+ 8)(S + S52). (17

The matrices in equation (14) can be computed without performing the singular
value decomposition, but this equation is an improvement over equation (9) only
because the scalar coefficients x, A, and ¢ can also be computed without the
SVD, as we will show below.

Iterative Computation of the Scalar Coefficients
We first find expressions for the other scalar coefficients in terms of A. A little

algebra shows that

(\* — 118 (18)

K =

1
2
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and
{ = kA — det B. (19)

Let A()A) denote the expression for the attitude matrix given by equations (14),
(18), and (19) as a function of A and B. This is equal to A if A is given by
equation (16). Equations (7), (9), and (16) give

A = tr(AoxBT), (20)

so A can be computed as asolution of the equation
0 = A — trfA(A)B™] = A — tr{(x + |B|))BBT + A(det B)I — (BB") . (21)
Multiplication by 2, substitution of equations (18) and (19), and use of the identity

|BIF — tr[(BBTY"] = (ST + 83 + S3)* = (S1 + S5 + §9)
= 2(5382 + S28? + S1S3) = 2|adj BJP (22)
let us write this as

0 = p(A) = (A* — |BJF)* — 8r det B — 4|adj BJI" (23)

It can be shown that the quartic polynomial p(A) is the same polynomial that is
used in QUEST, although the explicit form of the coefficients is different. Sub-
stitution of equations (10), (11), and (12) into equation (23) gives the four roots
of the quartic in terms of S, S2, and Ss:

p(,\)::()\_Sl _SZ_-S:;)()\_S] +Sz+S3)

This form is useful for analysis, but not for computation, since the singular values
are not known in the iterative method before the appropriate root of the quartic
has been found. The roots are all real, and they are the four eigenvalues of the K
matrix in the g-method, as is well known [4, 6]. Equation (16) and the inequalities
of the singular values expressed by equation (8) show that we require the maxi-
mum root. This root is distinct unless S, + S; = 0, in which case the attitude so-
lution is not unique, as is discussed in Markley [11]. In the method introduced
in this paper, S, + 83 = 0 gives { = 0, and all the elements of A, have the in-
definite form 0/0. ;
We now note from equations (2) and (20) that

L(Awp) =2—A2=0, (25)

which also shows that choosing the largest root of p(A) minimizes the loss func-
tion. For small measurement errors, the loss function should be close to zero, so
the maximum root of equation (23) should be close to A [6]. Thus we can find A
by Newton’s method, starting with this value. This defines a sequence of esti-
mates of A by

/\i = Ai—l - p(/\i—l)/pl(/\i°l)a l = 1aza cv e (26)

where
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P =8 27)

is the derivative of p(A) with respect to A. Substitution of equation (24) shows that
this sequence would be monotonically decreasing with infinite-precision arithme-
tic, but a computation with finite-precision arithmetic eventually finds a A; = A;_;.
At this point, the iterations are terminated and A;_, is taken to be the desired
root to full computer precision. This iteration converges extremely rapidly in
practice, except in the case that the maximum root of p(A) is not unique. In that
case the derivative in the denominator of equation (26) goes to zero as the root
is approached, so the computation is terminated and a warning is issued that the
attitude is indeterminate.

Newton’s method has quadratic convergence. Higher-order methods, such as
Halley’s method [12], would give convergence in fewer iterations, but would re-
quire more computations per iteration. Since convergence with Newton’s method
is quite rapid, higher-order methods were not investigated further.

It is important to carry out the computation of A to full machine precision,
since otherwise the computed attitude matrix will not be orthogonal. Straight-
forward but tedious matrix computation using the Cayley-Hamilton theorem [9]
for the matrix BB" gives

AMNATA) =T ~ (20)p(A) A\ — BB"). (28)

This shows the orthogonality of the computed attitude matrix if A is a root of p(A),
and estimates the departure from orthogonality otherwise.

Analytic Computation of the Scalar Coefficients

The scalar coefficients can also be computed as functions of the largest singu-
lar value S; of B by

k=28(S2+ 83) + 528 = 8,5, + S3) + S;' det B, (29)
A=S+ (5 +S3), (30)
and
=K+ SH(S+S5), (31)
where
S, + 83 = {S1lladj BIF — (Si" det B)}] + 287" det B}'2 (32)

This form is chosen to avoid near-cancellations in near-singular cases. The fargest
singular value is found as the positive square root of the largest root of the cubic
characteristic equation of the matrix BB [4]:

0= (S}’ — tr(BB")(S})* + tr[adj(BBM)]S} — det(BB")
= (S} — IBIF(S?? + lad BIFS? — (det BY. (33)
The largest root of this equation is given by [4, 13]

§i= %{"BI{Z + 2a cos[% cos!(a ’33)]}, (34)
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where
a = (B — 3jladj BI)"", 35)
and
B =BI° — &/2)|B[Fladj BIf + (27/2) (det B)™. (36)

Equations (10), (11), and (12) can be used to show that the argument of the
square root in equation (35) is greater than or equal to zero, with equality if and
only if S, = S, = [S5], in which case B = 0 also. Thus we have a complete ana-
Iytic solution of Wahba’s problem, which would appear to be preferable to the it-
erative method. In practice, however, the five transcendental function evaluations
required by equations (29) to (36) result in a slower algorithm without providing
any additional accuracy, as shown by tests below.

Computation of the Covariance Matrix

The quality of the attitude estimate is best expressed in terms of the covari-
ance of the three-component column vector ¢ of attitude error angles in the
spacecraft body frame. This parameterization gives the following relation be-
tween the estimated and true attitude matrices A and A4 ;..:

A= oxpl(-$) X[ ue = I = (6] + ZSXF + M, ()

where the matrix [uX] is defined for a general three-component column vec-
tor u as

0 —U3 U,
[uX] = Us 0 ~Uu]. (38)
—U; U, 0

This notation reflects the equality of the matrix product [uX]v and the cross
product u X v.

Shuster [14] has recast the Wahba problem as a maximum likelihood estimation
problem, which leads to a very convenient method for computing the covariance
matrix. Asymptotically, as the amount of data becomes infinite, the covariance
matrix tends to the inverse of the Fisher information matrix F, which is the ex-
pected value of the Hessian of the negative-log-likelihood function J [15],

Fy = E[6/3¢;0¢4] . (39)

The distribution of the components of the ith measurement error vector perpen-
dicular to the true vector are assumed to be Gaussian and uniformly distributed
in phase about the true vector with variance o7 per axis [11, 14]. These variances
of unit vectors can be interpreted as angular variances in radians. Then the nega-
tive-log-likelihood function for this problem is

IM:

] = ‘%‘ O',‘—Z[b,‘ - Al'i|2 + .. .y (40)

i=1

where the omitted terms are independent of attitude. This error distribution is
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only an approximation for real sensors, and the amount of data is always finite,
but these approximations only affect the covariance estimate and not the attitude
estimate. The resulting covariance estimate has been found to be completely ade-
quate in applications [14].

For any positive Aq and with

n -1
Ol = (E 0,-‘2> : (41)
i=1

the weights
a; = Ao /0] (42)
are positive and satisfy equation (3). With this choice
J = Ag'outl(A) + ..., (43)

where the ellipsis has the same significance as in equation (40). Equation (43)
shows that the solution to Wahba’s problem with these weights is a maximum-
likelihood estimate, since it minimizes the negative-log-likelihood function. Sub-
stituting equation (37) into equation (2) and using the identity

[aX][vX] = ~(vT@)] + vu" (44)

gives, to second order,

L(A) = Ao — tr(Auwue BY) + tr{{¢X] A1 BT} + % tr{{[(' )] — d']Auruc BT}

= Ao ~ tr(Aue BT + tr{{pX |41 BT} + % &' [tr(Awwe BN — A BT
(45)

Inserting this into equation (43) gives the attitude-dependent part of the negative-
log-likelihood function. Only the part quadratic in ¢ contributes to the Fisher in-
formation matrix

1
F = Xg'ogiftr(Awe BN ~ E(Am.eBT + BAL)]. (46)
Matrix inversion then gives the covariance matrix
1
P = Aooiuftr(Auwe BT — E(A.mBT + BAgu)l 47

The true attitude matrix is not known in a real attitude estimation problem, of
course, s0 A,y must be used in place of 4., in computing the covariance. Making
this replacement in equation (47) gives, with equation (20) and the symmetry of
the matrix product A, 8", which follows from equations (7) and (9),

P = XooiA — AguB") ' = hool adj(Al — AgpBT)/det(A] — Aoy BT).
: (48)
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Equation (48) is one of the forms for the covariance matrix given in Appendix B
of Markley [11], which is also the result obtained in Markley [16], simplified to
the case that only the attitude is estimated. The computation of the matrix inverse
can be avoided as follows [17]. Equations (7), (9), and (16) show that

Al — Ao BT = U, diag[S; + §3,5; + $1, 8, + S;JUT. (49)
The determinant of this matrix is given by equation (17) as
det(A] ~ AxB") =¢, (50)
and its adjoint is given by equations (7), (15), and (49) as
adj(Al — Ao BT) = U, diag[(Ss + S)) (S1 + S52),(S) + $2) (S2 + S3),
(82 + S3)(Ss + S)IUT
= «I + BB™. By
These yield the desired manifestly symmetric result
P = Aooki(xI + BB/ . (52)

We see that the covariance matrix is infinite when ¢ = 0, which agrees with the
conditions for indeterminacy of the attitude solution discussed above.

The angular units of o; were assumed above to be radians, in which case the
dimensionality of the covariance matrix is radians squared. It is often more con-
venient to allow the o; to be specified in arbitrary angular units. In this case,
equations (40) and (43) are only true up to a constant multiplicative factor that
does not affect the conclusions of this section. The units of the covariance matrix
are then the square of the angular units used for o;.

Normalization of the Weights

The results above are valid for any positive value of the parameter Ay, but only
two choices are useful:

Ao =1 (normalized weights) (53)
or
ho = 0 (unnormalized weights). (54)

Past treatments of this problem have generally used normalized weights, which
give a B matrix with elements of order unity. This is convenient in computations
using fixed-point arithmetic, but floating-point arithmetic is an option on virtu-
ally all present-day computers. The normalized form may also be useful if the
measurement weights are arbitrarily assigned.

The unnormalized form is more natural if the weights are computed in terms
of measurement variances, as in equation (42), since the unnormalized weights
are just equal to the inverse variances. The unnormalized form also simplifies the
computation of the covariance, as shown by equation (52), but this form can po-
tentially lead to numerical problems. The elements of B are of order ool if the
weights are not normalized, which means that {jadj B is of order g. Since o«
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can be of order 107° radians for highly accurate sensors, |Jadj B|* can be of order
10%, leading to exponent overflow in floating-point representations that do not
provide an adequate exponent range. This is not a problem with double-precision
arithmetic in conformity with ANSI/IEEE Standard 754-1985 for binary floating-
point arithmetic [18], since this standard mandates eleven bits for the exponent,
allowing representation of numbers as large as 10°®. The Standard Apple Nu-
merical Environment [19] and VAX G_FLOATING [20] double-precision arith-
metic employ eleven-bit exponents, but VAX D_FLOATING double-precision
arithmetic allots only eight bits for the exponent. This is the same as in IEEE-
standard single-precision arithmetic, and allows representation of numbers only as
large as 10%. Single-precision arithmetic would lead to exponent overflow prob-
lems for measurement variances o less than about 107, but double-precision
arithmetic is certainly preferred in such cases.

These overflow problems can often be avoided by a suitable choice of the units
for 0. However, the optimized loss function computed with unnormalized weights
in radian units has the nice property of being roughly equal to the number of
measurements n. This property is lost when other angular units are used, but it
can be recovered by the appropriate rescaling.

Algorithm Implementation

Two forms of the new algorithm, the form with the iterative solution for A
(FOAM--Fast Optimal Attitude Matrix), and the form with the analytic solution
for §, (SOM A —Slower Optimal Matrix Algorithm), were implemented in double-
precision FORTRAN and executed on a DEC VAX 8830 computer. Both were
implemented in G_FLOATING arithmetic with unnormalized weights, and
FOAM was also implemented with normalized weights in both G_FLOATING
and D_FLOATING arithmetic.

The computational flow of FOAM is as follows. The input observation and ref-
erence vectors are normalized and A, and the B matrix are computed according
to equations (3) and (4), using equations (41), (42), and either (53) or (54) for the
weights. Some efficiencies in the normalization process were found and applied to
all the algorithms in the tests. The scalars det B, ||B|f, and ||adj BJ are calculated
next, and A is computed by equations (23) and (26). Then the optimal attitude
estimate is found from equation (14), using equations (18) and (19) for « and ¢,
respectively. Finally, the covariance estimate is given by equation (52). This last
step is optional; but it is not very expensive, since it largely uses previously com-
puted quantities.

In the case of near-indeterminacy of the attitude estimate, the singular values
are approximately S, = A, Sz = 83 = 0 [11], which gives the covariance

P = Aok U diagA* /5, A7, A7 UT, 55
where { is very small. The iterative solution for A by equation (26) is terminated if
P = 8 < 8A3otubirt, - (56)

where ¢, is some suitably chosen tolerance, since equation (55) predicts attitude
estimation error standard deviations larger than (A/Ao)¢ . when this inequality is



270 Markley

satisfied. This error can be much less than ¢, only if A < A, in which case the
attitude estimate is poor because the loss function is large. The angular units used
for ¢, must be the same as those of g, of course. In practice, ¢ can be quite
large; a value of 2 radians was used for the test runs below.

The computational flow of SOMA is identical to that of FOAM, except for the
computation of A, k, and ¢, which are found from equations (34) to (36) and (29)
to (32).

Algorithm Test—Accuracy

The new algorithms, FOAM and SOMA, were compared with the SVD
method {11} and Shuster’s QUEST (QUaternion ESTimation) algorithm [6]} for
minimizing Wahba’s loss function. The SVD method was implemented with un-
normalized weights in D_FLOATING arithmetic, and QUEST was implemented
with normalized weights in G_FLOATING arithmetic. In addition to the refer-
ence and observation vectors and the measurement standard deviations, QUEST
requires the input of five control parameters, which were taken as
QUIBBL = (0.1, IMETH = 1 (two parameters used to avoid a singularity for
180 degree rotations), FIBBL = 107" (similar t0 ¢:0), QUACC = 107% (a crite-
rion for convergence of the iteration for A), and NEWT = 10 (the maximum num-
ber of iterations allowed). The SVD method is expected to be the most accurate,
since it uses very well-tested and robust algorithms to make the best possible use
of the information contained in the B matrix.

Twelve test cases were analyzed. Each test case was specified by a set of mea-
surement vectors r; and measurement standard deviations o;. The observation
vectors were computed as

bi = Atrueri + n;, (57)
where n; is a vector of measurement errors, and

0352 0.864 0.360
Auee = | —0.864 0.152 0.480 [, (58)
0.360 —0.480 0.800

which has all non-zero matrix elements with exact decimal representations and is
otherwise arbitrary. The tests were run both with n; = 0 and with measurement
errors simulated by zero-mean Gaussian white noise on the components of n;. The
specified measurement standard deviations in each case were used to compute the
measurement weights and also the level of simulated measurement errors.

The twelve test cases were specified as follows:

Case 1 used the three reference vectors
r, =[1,0, 01", r; = [0, 1,017, r; = [0,0, 1%, (59)
with measurement standard deviations o; = o, = o3 = 107 rad. This
reference vector set models three fine sensors with orthogonal boresights
along the body axes.
Case 2 used the two vectors r; and r, from the above set with oy = o, =
107° rad.
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Case 3 was the same as case 1 but with o = 0, = o3 = 0.01 rad, modeling
three orthogonal coarse sensors.

Case 4 was the same as case 2 but with o, = o, = 0.01 rad.

Case 5 used the two reference vectors

r, = [0.6,08,0]", r,=[0.8,-0.6,0[, (60)

with o, = 107® rad and o, = 0.01 rad. This models one fine and one
coarse sensor with orthogonal boresights not along the spacecraft

body axes.
Case 6 used the three reference vectors
r =[1,0, O]T, r; = [1,0.01,0], r; = [1,0,0.01]7, (61)

with o, = 0, = o3 = 107% rad. This reference vector set models three
star measurements in a single star sensor with a small field-of-view.

Case 7 used the two vectors r, and r; from equation (61) with o), = 0, =
107® rad.

Case 8 was the same as case 6 but with o, = 0, = 03 = 0.01 rad, modeling a
star sensor with large errors, to stress the algorithms.

Case 9 was the same as case 7 but with o, = o, = 0.01 rad.

Case 10 used the three references vectors

r=101,0,0]", 1 =1[096,0280]", r;=[0960,028"  (62)

with o, = 10™° rad and o, = o5 = 0.01 rad. This models one fine sensor
with its boresight along the body x-axis and two less accurate reference
vectors 16.26 degrees off this axis.

Case 11 used the vectors r, and r, from equation (62) with o, = 107® rad and
o = 0.01 rad.

Case 12 was the same as case 11 but with o, = 0.01 rad and o, = 107° rad. This
models the case that the boresight of the fine sensor is 16.26 degrees off
the body x-axis.

The estimation error, which is defined as the rotation angle between the true
and estimated attitudes, is the accuracy measure of most interest in applications.
The estimation error is mathematically defined by

Aop! = {exp[(—¢erre)x]}Atrue
= {cOS derr ] + (1 — COS Perr)ee” — sin derr[eX A e, (63)

where e is the unit vector defining the axis of the rotation that takes the true atti-
" tude to the optimal estimate. This gives, after some algebra,

Gece = 2 5in" (| AopA e — 1I/VB) = 2 sin!(|dop — Awucll/V8).  (64)

The estimation errors for the twelve test cases, computed with simulated mea-
surement errors, are presented in Table 1. These errors are the same for FOAM,
SOMA, and the SVD method, to the accuracy of the computation errors. The
QUEST estimation errors are also identical, except for cases 10, 11, and 12 where
they are much larger. The QUEST algorithm returns a flag warning of failure in
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TABLE 1. Estimation Errors

FOAM, SOMA, and SVD method QUEST
Case Pere (rad) L(Aop) Peov (rad) ¢err (rad) L(Aop)
1 1.23 X 107 1.81 1.22 x 107* 1.23 X 107 1.81
2 1.79 x 107* 1.15 1.58 X 107° 1.79 X 107 1.15
3 1.25 X 1072 1.86 1.22 X 1072 1.25 X 1072 1.86
4 1.81'x 107 1.18 1.58 x 1072 1.81 x 1072 1.18
5 1.21 x 1072 0.07 1.00 X 1072 1.21 x 1072 0
6 3.10 x 107° 2.19 8.66 X 107° 3.10 X 107° 1.87
7 3.94 x 107° 1.70 1.41 x 107* 3.94 x 107° 222
8 0.235 2.26 0.866 0.235 226
9 0.105 1.78 1.414 0.105 1.78
10 217 x 1072 2.13 2.53 x 1072 0.599 —~9045
11 422 x 1072 0.13 3.57 x 107? 0.683 —9769
12 2.74 X 1072 2.34 3.57 x 1077 2.348 -9210

these cases, but it issues the same warning in cases 5 through 9 where it computes
the attitude successfully. This poor behavior could possibly be corrected by tun-
ing the control parameters in QUEST, but it is not clear how to accomplish this.

The optimized loss function L{A,), computed with unnormalized weights, is
also given in the table. The QUEST column was computed by dividing the nor-
malized loss function by a,, which is the proportionality factor between the two
loss functions given by equations (1), (42), (53), and (54). The unnormalized loss
function for FOAM, SOMA, and the SVD method is on the order of the number
of measurements, as expected. A larger value indicates either failure of the al-
gorithm or the use of incorrect weights. The large negative values of L(A4) in
cases 10, 11, and 12 provide a better warning of the failure of QUEST in these
cases than the warning flag provided by the algorithm.

The FOAM, SOMA, and SVD covariance estimate of the error, ¢.o,, which is
identical for these three methods, is also given in Table 1. This is computed as
the square root of the trace of the covariance matrix. The covariance estimate
for QUEST differs, but not significantly, because it is computed differently. It
can be seen that the covariance gives a good order-of-magnitude estimate of the
expected estimation errors in most cases, and that it errs on the conservative side
in cases where it differs significantly.

Since the estimation error is the same for FOAM, SOMA, and the SVD
method, other error measures were investigated in order to differentiate among
these methods. Table 2 presents the computation error for all methods, computed
for the same cases but with n; = 0,

COMP = "Aop: - Atrue" = ”Aop!A true = I") (65)

and the maximum orthogonality error, with or without simulated measurement
errors,

ORTH = [ AguATy — 1. (66)
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TABLE 2. Computation and Orthogonality Errors

SVD method FOAM and SOMA QUEST
Case COMP ORTH COMP ORTH COMP ORTH

1 327x107"7 157x107" 461 x107" 1.12x107"% 310x 107 272 x 107"
2 327x1077 090x107' 305%x107' 611X107'" 169X 107 579 x 107
3 472x1077 216 X107 527 x107% 101 X 107® 169 x 107" 2.88 x 107"
4 243%x1077 040X 107" 3.05x107'" 1.12x 107" 1.69 X 107'* 2.65 X 107"
5 163x107"" 093x107'* 7.83x107° 273x10% 1.09x10° 6.88x 107"
6 6.62x107" 1.55%x 107 4.66 x 1077 894 x 107" 416 x 107 582 x 107"
7 374x107" 0.73x107% 784 x1077 154x 107" 133 x107% 502x107"°
8 248x107" 113X 107 404 x 107 750x107"% 416 x10™° 517 % 107"
9 991x107"% 071x107" 570%x 1077 112x107" 1.13x107% 5.02x 107"
10 367x1077 084x107" 149x107 297x107 191 x107* 916 x 107"
11 628%x 1077 057 %107 145 x 1077 287X 1077 255 8.31 x 107'¢
12 210x107° 140 x 107" 301 X107 600x 1077 232x10°% 3.09%x 107"

The FOAM and SOMA columns in the table give the maximum errors for all
variants of these methods; no significant differences were seen between FOAM
and SOMA or between normalized and unnormalized weights. The SVD method
gives the smallest orthogonality and computation errors. QUEST gives computa-
tion errors comparable to the FOAM and SOMA errors, except for its failure in
case 11, but has orthogonality errors similar to those of the SVD method, because
it always produces a normalized quaternion. D_FLOATING arithmetic is about
one decimal digit more precise than G_FLOATING arithmetic, as expected [20].
This is not significant in general, since the computation and orthogonality errors
are much less than the estimation errors in all cases with realistic noise, except
for QUEST in case 11. It is clear that cases with widely differing measurement
accuracies furnish the greatest computational challenges to all the methods.

Algorithm Test—-Speed

The above methods were also compared for computational speed. The mea-
sured CPU times were computed for sets of two to twelve observations, similar to
case 6 in the previous section, and were effectively the same for normalized and
unnormalized weights. They consist of a part that is independent of the number
of observations processed and a part proportional to the number of observations:

touest = 0.24 + 0.09n msec, 67
troam = 0.26 + 0.07n msec, (68)
tsoma = 0.36 + 0.07n msec, (69)
tsyp = (3 = 1) + 0.07n msec. (70)

The n-dependent time in FOAM, SOMA, and SVD is the time required to nor-
malize the input vectors and form the B matrix. The greater n-dependent time in
QUEST is due to the computation of the information matrix, which QUEST uses
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to compute the covariance matrix. The n-independent time is the time required
to perform all other computations, including the covariance matrix. The compu-
tation of A generally requires one or two iterations in QUEST and two to six iter-
ations in FOAM, due to the need to iterate to convergence in the latter method,
which accounts for the greater n-independent time in FOAM. The transcendental
function calls in SOMA account for its longer running time compared to FOAM,
which is definitely preferable to SOMA since it is faster and no less accurate. The
range of times for the SVD method is related to the rank and conditioning of the
B matrix. This method is significantly slower than all the other methods tested,
as has been noted previously; but the SVD method may still find applications in
nearly singular estimation problems.

The absolute execution times are not of great significance, but the relative
times are interesting. The exact CPU times will vary from case to case, and the
time required for either FOAM or QUEST appears to be quite modest in com-
parison with other computations performed in spacecraft attitude determination.

It should be pointed out that FOAM computes the attitude matrix, while
QUEST computes an attitude quaternion. If an attitude matrix is required from
QUEST, as in the previous section, an additional step is required to compute it
from the quaternion. This requires only multiplications and additions, though,
and no transcendental function evaluations. If it is desired to compute a quater-
nion from FOAM, the standard method for extracting it from the attitude matrix
can be used [21]. This requires the evaluation of one square root, but FOAM is
faster than QUEST for more than three observations even with this addition.

Two-Observation Case

In the special case of two observations, the rank of B is at most two, so
det B = 0, which gives with equations (18), (19), and (23)

« = [ladj B, ()
A= (2 + BH™, (72)

and
{ = kKA. (73)

Both « and A must be positive in order for A to be the largest root of p(A). The
explicit form for B as a function of the reference and observation vectors
then yields

adj B" = a,a,(b; X by) (r; X ry)", (74)
kK = a,a;/b; X by||r; X ryf, (75)

and
A= {a} + 2a,a:[|by X by||r; X 13| + (biby) (riry)] + al} (76)

The attitude is indeterminate if either the two reference vectors or the two obser-
vation vectors are parallel or antiparallel. Thus we will assume that both 8,, the
angle between r; and r;, and 6,, the angle between b, and b,, are strictly greater
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than zero and strictly less than pi. Now set Ap = a, + a, = 1 for the remainder
of the discussion in this section, define

e= (0, — 6,)/2, 7

and note that |e| < m/2. The parameter ¢ is zero for perfect measurements since
the angle between the reference vectors is equal to the angle between the obser-
vation vectors. The expression for A can be written more compactly as

A = (1 — da,a, sin’e)"?, (78)

which is equivalent to equation (72) in Shuster and Oh [6].
It is convenient to write the optimal attitude estimate in terms of the ortho-
normal triads:

r. = (r; + ry)/[2 cos(8,/2)], (79a)
r- = (r; — r;)/[2 sin(6,/2)}, (79b)
re X ro = (r X n)/jr X ry, (79¢)
and
b, = (b; + b,)/[2 cos(8,/2)}, (80a)
b- = (b, — b,)/[2 sin(8,/2)], (80b)
b, X b- = (b; X by)/|b( X by|. (80c)

Other orthogonal triads can be defined, but these preserve the maximum sym-
metry between the two measurements. The optimal attitude matrix expressed in
terms of these friads is

Agp = [cos e(b.rT + b_rD) + (a, — a;)sin e(b,r” — b_r1)]/A
4+ (by X b)) (re X r)%. (81)

It is interesting to note that a factor of a,a; in the denominator of equation (14)
has cancelled an identical factor in the numerator. Thus the attitude estimate
has a well-defined limit as either a; or a; tends to zero, even though Wahba’s loss
function does not have a unique minimum in either limit. Another interesting
property of the two-observation case is that the optimal estimate is independent
of the weights when £ = 0. Equations (25) and (78) with A, = 1 show that the
optimized loss function is zero if any of ay, a,, or € is zero.

We now investigate the conditions under which this optimal attitude estimate can
be obtained by a generalization of the simpler TRIAD or algebraic method [5-7].
This is a well-known algorithm for computing an attitude matrix from two vector
observations by forming orthonormal triads from the reference and observation
vectors, One of the vectors in the reference triad is the normalized cross product
of the two reference vectors, and the other two are orthonormal linear combina-
tions of the two reference vectors. The most general form for the reference triad
that we will consider is:
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r; = cos §,r, — sin ¢,r- = [sin(y, + 6,/2)r; — sin(y, — 6,/2)r;]/sin 6, ,

(82a)

ry = cos Y,r_ + sin ¢,r, = [cos(y, — 6,/2)r, — cos(y, + 6,/2)r}/sin 6, ,
(82b)
nXrg=r, Xr- N (82C)

where . is some rotation angle in the plane spanned by r; and r,. The observa-
tion triad is

by = cos Ysbs — sin Ysb_ = [sin(ys + 65/2)b: — sin(Ws — 05/2)bs]/sin 6, ,

(83a)

bu = COS l/lbb_ + sin l[lbb+ = [COS(lllb - Bb/Z)bz - COS(lllb + 0;,/2)')1]/511'1 6, ,
(83b)
b] X b]] =bs X b_ , (830)

similarly.

Different choices of the angles ¢, and ¢, give different variants of the TRIAD
method. The choice ¢, = ¢, = 0, for example, treats the two measurements
symmetrically, using all three components of each. The choice ¢, = 6,/2 and
Uy = 0,/2 gives

r=r, (84a)
rg = (l'z — COS O,rl)/sin 0,, (84b)

and similar relations for b; and by;. This makes no use of the component of r,
along r, or the component of b, along b,. The choic'e ¢, = —0,/2 and ¢, =
—6,/2, on the other hand, gives

rn=r,, (85a)
ry = “(l'l — COS BrrZ)/Sin 6, > (85b)

and similarly for b; and by;. This choice ignores the components of r; and b,
along r; and b,, respectively. The key point is that ¢, is some function of 6, and
the measurement weights, and ¢, is the same function of 6, and the weights. Note
that this does not imply that i, = ¢, except in the case that € = 0. Often, the
TRIAD method is understood to mean only the special cases of equations (84) or
(85), rather than the generalized method specified by equations (82) and (83).
These special cases are the most common cases, since TRIAD is often employed
where one vector is much better known than the other, so one component of the
less-well-known vector is not used.
The TRIAD attitude estimate is given by

Arriap = [b1ibuiby X bu][riirgir X ]’
= byr{ + byri + (by X by) (r; X ry)T
= cos(» — ¥,) (b.rY + b_rl) + sin(y, — ¢,) (b.rI — b_rl)
+ (by X b )(r. X)L (86)
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We now attempt to find angles ¢, and s, such that the TRIAD solution gives the
optimal attitude estimate of equation (81). We immediately find such angles in
four special cases:

1) If & = 0, then ¢, = ¢, automatically, all TRIAD solutions are the same,
and they all agree with the optimal estimate, which is independent of the
weights in the loss function.

2) If a; = a, = 1/2, the TRIAD solution with ¢, = ¢, = 0 and with vector
triads given by equations (79) and (80) gives the optimal estimate.

3 If a, =1, a, = 0, the TRIAD solution with ¢, = 6,/2, ¢, = 6,/2 and
with triads as in equations (84) gives the optimal estimate.

4) Ifa; = 0,a, = 1, the TRIAD solution with ¢, = —0,/2, , = —8,/2 and
with triads as in equations (85) gives the optimal estimate.

We will now show that the TRIAD solution does not minimize Wahba’s loss
function except in these four special cases. Comparing equations (81) and (86)
gives the following necessary condition for agreement of the TRIAD and optimal
attitude estimates:

tan(y, — ¢,) = (a, — ax)tan ¢. (87)

Set 8, = 6,, some arbitrarily chosen angle, and denote the corresponding value of
Y, by o, which is also a function of the observation weights. Then

tan(¢, — ¢o) = (a, — az)tan|(6s —.00)/2] = (a, — a)7 . (88)

This equation must hold for any 8,, with ¢, and 6, regarded as fixed parameters,
since ¢, is required to be a function of 6, and the weights only, and not of 0..
Now setting 8, = 8, in equation (87) gives ¢, = ¢, and

tan(t,lr, - ll/o) = (al - az)tan[((), - 00)/2] = (a1 - az)’Tr , (89)

which must hold for any 6,. In fact, equation (89) could have been written directly
in analogy with equation (88), since ¢, is required to be the same function of 6,
and the measurement weights as ¢, is of 6, and the weights. Now combining
equations (88) and (89) with some elementary trigonometry gives

tan(y, — ¢) = tan[(Ys ~ o) — (¥r — ¢o)]
= (a, — a;) (1, — )/[1 + (a, — a2)*71,]
= (a, — ax)tan (1 + 71)/[1 + (1 — daja;)mr,]. (90)

Equating the right sides of equations (87) and (90) gives, after some cancella-
tions, the necessary condition

4a,a;7p7.(a) — ax)tan g =0, 91)

which is satisfied in the four special cases discussed above. It is also satisfied if
either 7, or 7. is zero, but these conditions cannot be satisfied in general since 8,
is an arbitrarily chosen angle. Thus the TRIAD method cannot find the optimal
attitude minimizing Wahba’s loss function in the general case, but only in the
special cases e = 0,a, = 0,4, =0, and a, = a,.
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Two-Observation Case—Covariance

The covariance matrix in the two-observation case can be written, using equa-
tions (4), (42), (52), (73), and (75), as

P = 2a&[lbr X ba|Jry X 1ol + g3o’bib] + (rlr2) (bib] + b;b[)
+ ol b3 ]/(Aby X byl|r, X ). (92)

Now we make the approximation that 8, = 6,, which should be valid for comput-
ing the covariance matrix if the measurement errors are much less than the angu-
lar separation of the two vector observations. This gives A = Aq and allows the
covariance matrix to be expressed as a function of the observation vectors only:

P = g&/b; X by|[[b; X bo}Z + aiai’b;bT + (b{by)(b,b] + byb))
+ gio;’b,b]]. (93)

This expression, which is mathematically equivalent to equation (100) in Shuster
and Oh [6], can be further simplified by writing the identity matrix as a dyadic in
the orthonormal triad by, by, and b; X by;:

I =b;b{ + bybi + (b; X by) (b; X by)"

= |b; X by| 4 bbT + b,bT + (b; X by) (b, X by)T — (bTb,) (bibT + byb])].
(%4)

Substituting this into equation (93) and using equation (41) gives
P = lbl X bzl_z[(f%blblr + (lebzb-zr + (T!Zm(b] X bz) (b1 X bz)T] . (95)

This expression is very useful for predicting attitude estimation performance for
a given pair of reference vectors. In particular, it explicitly displays the singular-
ity of the covariance matrix for coaligned vector measurements. For nearly
coaligned measurements, the eigenvectors of the covariance matrix can be shown
with some effort to be a;b, + a,b,, with variance |b;, X b,;| % (o? + 03}) — o,
and any two axes perpendicular to this line, with variance ok, up to terms of
order |b; X b,|2

Since the TRIAD algorithm with appropriately chosen vector triads gives the
optimal estimate in the special cases o, = 0,, 01 <€ 03, and o, > 05, as dis-
cussed above, equation (95) also gives the TRIAD covariance in these cases.

Conclusions

A new algorithm for minimizing Wahba’s loss function has been found, which
solves for the optimal attitude matrix directly, without the intermediate computa-
tion of a quaternion or other parameterization of the attitude. Since the attitude
matrix is inherently nonsingular, there are no problems with special cases like
180 degree rotations, and no special procedures are needed to deal with such
cases. Two variants of the new algorithm are given; one is completely analytic,
while the other requires an iterative calculation of a scalar coefficient in the solu-
tion. The method with the iterative calculation is as fast as any existing method
even if the computation of a quaternion from the attitude matrix is included. The
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completely analytic variant is slower and no more accurate, so its use is not recom-
mended. The new algorithm appears to be more robust than the existing fast op-
timal quaternion estimation method in some difficult cases, and it requires fewer
control parameters. The covariance of the attitude error angles can be computed
very efficiently, since it makes use of the same scalar and matrix quantities needed
for the optimal attitude computation.

Intuitively appealing closed-form solutions for the optimal attitude matrix and
the covariance matrix are presented for the special case of two observations. The
optimal attitude estimate is compared with the well known non-optimal estimate
computed using orthonormal triads formed from the observation and reference
vectors. When the angle between the two reference vectors is equal to the angle
between the two observation vectors, all triad choices give the optimal estimate,
which is independent of the weights in the loss function. Except for this case, the
optimal and triad-based attitude estimates agree only when the two vector mea-
surements are given equal weights in the loss function or when the weight given to
one vector measurement is negligible compared to the weight given to the other.
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