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Attitude Determination using Vector
Observations and the Singular Value
Decomposition'

F. Landis Markley®

Abstract

A new method for finding the attitude matrix minimizing Wahba’s loss function, based on the
singular value decomposition of a 3 X 3 matrix, is presented. Equations are given for the co-
variance matrix of the attitude estimate, as well as for the eigenvalues and eigenvectors of this
matrix, in terms of the singular value decomposition matrices. The singular value decomposition
method is compared with Shuster’s implementation of Davenport’s q-method, which is more
efficient than the new algorithm but does not give the eigenvalues and eigenvectors of the
covariance matrix. These are often useful for analysis, since the maximum eigenvalue and its
eigenvector give the magnitude and direction of the largest component of the attitude uncertainty.

Introduction

In 1965, Wahba [1] posed the three-axis attitude determination problem in terms of
finding the proper othogonal matrix A,,, that minimizes the least-squares loss function

n

L(A) = ¥4 2, a;|b, — Ar, . (1)
=1
The unit vectors r; are representations in a reference frame of the directions to some
observed objects, the b; are the unit vector representations of the corresponding obser-
vations in the spacecraft body frame, the a; are positive weights, and » is the number
of observations.The motivation for this loss function is that

bi = Alrueri + €; (2)

for all i, where A,,.. is the true attitude matrix and the € are related to the measurement
errors. The attitude matrix minimizing Wahba’s loss function is not the minimum
variance estimate.
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We assume that we have at least one observation, so we can normalize the weights
to give

2": a=1. (3)
i=}
Then it is easy to show that [2]
LA =1- ia,-b,-TAri =1 — tr(AB7), (4)
i=1
where
B = ia,-b,-r,-T. (5)

i=1

The superscript T denotes the matrix transpose, and tr denotes the trace of a matrix. The
last step in equation (4) follows from the invariance of the trace of a product of matrices
under a cyclic permutation of the factors in the product.

This problem has a long history [3] and has been the basis for several operational
spacecraft attitude determination algorithms, especially in the form discovered by
Davenport (as reported by Keat [4]), and later modifed and extended by Shuster [5].
This paper presents a solution of Wahba's problem involving the singular value decom-
position (SVD) of the matrix B [6~9]. The SVD provides both an elegant tool for
theoretical analysis and a robust procedure for computing the attitude matrix
minimizing Wahba’s loss function. The SVD is implicit in early solutions of Wahba’s
problem by Farrell and Stuelpnagel [2], Wessner [10], Velman [11], and Brock [12, 13],
and in papers by Davenport [14] and Bjérck and Bowie [15], but it has not been used
for computation of the optimal attitude before. The method of Farrell and Stuelpnagel
[2] uses a polar decomposition of B followed by diagonalization of its positive semi-
definite factor. Other approaches compute the eigenvalues and eigenvectors of the
matrix B'B, resulting in a loss of accuracy [7]. Methods that require division by the
square roots of the eigenvalues of B’B fail when B is singular, as do some, but not all,
iterative schemes for computing the optimal attitude [15-21]. It should be pointed out
that the iterative methods were applied in cases where B was known to be close to an
orthogonal matrix and therefore nonsingular.

Davenport’s g-method [4] finds the quaternion representing the optimal rotation as
the eigenvector with maximum eigenvalue of a symmetric 4 X 4 matrix, the elements
of which are simple linear functions of the elements of B. Finding all the eigenvectors
would be more expensive than performing the SVD of a 3 X 3 matrix, but this can be
avoided by iterative computation of the maximum eigenvalue using the knowledge that
it is very close to unity [5]. Tietze has proposed a method based on inverse iteration
and the same knowledge about the maximum eigenvalue [22].

The derivation of the SVD algorithm is given in the next section. Then the possibility
of ambiguous solutions is considered and some compact formulas for the attitude
covariance in terms of the SVD are derived. Finally, the implementation of the algo-
rithm is discussed.
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The SVD Solution to Wahba’s Problem

The singular value decomposition of the matrix B defined in equation (5) is
given by

B = USV", (6)
where U and V are orthogonal matrices, and
S = diag(s,, 55, 53) (7)
with
S =85 =51 =0. (8)

The notation of equation (7) means that § is a diagonal matrix with diagonal elements
sy, 82, §3, the singular values of B. It is convenient to define the proper orthogonal
matrices

U, = Uldiag(l, 1,det U)], (9)
V. = V[diag(1, 1, det V)], (10)
and

W = ULAV, = cos ®I + (1 — cos ®)ee’ — sin P[ex], (11)

where I is the 3 X 3 identity matrix and [e X] is defined as

0 —e; e
[ex]=| e 0 —ef.

—é; €, 0 (12)

This Euler axis/angle representation of W by a unit vector e and a rotation angle @ is
possible for any proper orthogonal matrix. The correspondence defined by equation
(12) between a skew-symmetric 3 X 3 matrix and a 3 X 1 column vector will be
assumed to hold for several other 3-component quantities defined below. This notation
reflects the fact that the matrix product [eX]v is equal to the cross product e X v for
any 3-vector v. We also define the diagonal matrix

S’ = diag(s,, s, dss) , (13)
where
d = (detU)(detV) = =1. (14)
In terms of these matrices equation (6) can be written
B =U,§'V% (15)

Substituting this into equation (4) and using the cyclic invariance of the trace and
equation (11) gives
LA =1 —-t(S'W)=1—-tuS" + (1 — cos D)[s, + ds,
+ (51 — s)ed + (s — dss)ed]. (16)
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In view of equation (8), we see that L(4) is minimized for @ = 0, which gives W =1,
LAy,)=1—uS'" =1—s — s —ds;, (17

and, from equations (9)-(11),
Ay = U, V% = Uldiag(i, 1,d)IV" . (18)

This minimum is unique unless s, + ds; = 0, in which case there is at least a one-
parameter family of minimizing W matrices given by setting e, = e, = 0, so that

1 0 0
W=10 cos® sin®
0 —sin® cos ® (19)

These include the identity matrix as the special case given by @ = 0. For specificity,
we always use equation (18) for 4,,.

Equation (18) represents the transformation from reference to body coordinates as the
product of two transformations. The matrix V? transforms from the reference frame to
an intermediate frame, which we shall call the S-frame, and U, transforms from the
S-frame to the spacecraft body frame.

Uniqueness of the SVD Solution

The uniqueness of the solution is closely related to the rank of the B matrix, which
is equal to the number of non-zero singular values [6]. If the rank of B is less than two,
we have 5, = 53 = 0, and the attitude matrix is not unique. This is not at all surprising,
since the rank of B is equal to the number of linearly independent reference vectors,
and it is known that at least two linearly independent reference vectors are needed to
determine the attitude uniquely.

We will now consider only B matrices of rank two or three, so 5, > 0. The deter-
minant of B is

det B = det(USVT) = d.f[SzSg; - (20)
Thus ifdet B = 0, eitherd = lorelsed = —1 ands; > s; = 0; the optimal solution

is unique in either case. This is the situation if the measurement errors are zero, as the
following argument shows. In the absence of errors, equations (2) and (5) give

B = MAn., 2D

where M is the real, positive semidefinite, symmetric matrix

M =3 abbl. (22)

i=1
Since A,,. is a proper orthogonal matrix,
det B = detM = mmyms; = 0, (23)

where m;, m,, m; are the non-negative eigenvalues of M. Thus the optimal solution is
unique in the absence of measurement errors if B has rank two or three. In the presence
of errors, the determinant of B may be negative, but its magnitude will be small, on
the order of the errors. Thus s, + ds; will be zero for positive s, only if d = —1 and
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s; = 53 = 0, which means that the solution is unique unless B is very close to having
rank less than two.

Sensitivity Analysis

We want to find the sensitivity of the optimal attitude estimate to variations in the
reference and observation vectors. These variations are not to be interpreted as time-
dependent motions of the vectors. Such variations change the B matrix by 8B, causing
variations 6U . and 6V, giving

8Ag = (BU)VL + U.(8V.), (24)

to first order in the variations. Ignoring second-order terms, the orthogonality of A,
means that the matrix

[©x] = —(84,)A% . (25)

is skew-symmetric. The column vector ©, which corresponds to [©@X] by the con-
vention introduced below equation (12), is a more compact representation of the attitude
variation than 84,,; it contains the components in the spacecraft body frame of the
angular variation in the attitude. Substituting for 84,, and AL, in equation (25) gives

(Ox] = —[(8UIVT + U.(6V.)IV. UL = U.([ux] + [vx)UL,  (26)
where the skew-symmetric matrices [uX] and [vX] are defined as
[ux] = -U%(8U,) (27
and
[vX]=—(8V.)V,. (28)
Equation (26} is equivalent to the vector equation
O =U,(u+v. (29)

The 3 X 1 column vectors v and u contain the components in the S-frame of the angular
variations in the transformations from the reference frame to the S-frame and from the
S-frame to the body frame, respectively. We must now find u + v in terms of 6B.

8B = (8U,)S'VL + U.(8S")V%L + U, S'(8V.), (30)
so using equations (27) and (28) gives
UL(8B)V, = —[ux]s’ + &' — §'[vx] (31)
and
[2x] = [ULEB)V,) — ULEB)V. = ([ux] + [vx]S' + S'([ux] + [vx]).
(32)

Solving equation (32) for the components of u + v and substituting into equa-
tion (29) gives ‘

©=U,D"z, (33)
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where
D = diag(s2 + ng,, dS3 + 8,8 t+ Sz) = [1 - L(Aap,)]l -8, (34)

We can use equation (5) to find 8B in terms of the variations 8r; and &b; in the
reference and observation vectors:

8B = 2 a[(8b)rT + b,(6r)]. (35)
i=1

Then equation (32) gives, after some algebra

M:

2= 3 a[(UL8h,) x (Vir) + (Ub,) x (V18r)]. (36)

I

Equations (33), (34), and (36) give the first-order variation in the attitude © as a
function of the variations ér, and &b;. They show the extreme sensitivity of the
computed attitude when s, + ds; = 0; this restates quantitatively the uniqueness results
of the last section.

Covariance Analysis

The covariance of the attitude estimate is a statistical measure of the estimation errors
arising from errors in the reference and observation vectors. The estimation errors,
which are the difference between the true and estimated attitude, should not be confused
with control errors, which are the difference between the true and commanded attitude.
We assume that these errors are small and linearize about the underlying error-free
solution, using equations (33) and (36) with a different interpretation. For the sensi-
tivity analysis b, and r; are the actual measured vectors, while for the statistical analysis
b; and r; are the underlying error-free vectors and 8b; and 8r; are statistical errors, so
O is the attitude estimation error vector. The matrices U, and V, and the singular values
are also error-free for the statistical analysis, since they are computed from b, and r;;
and the attitude estimate A, is equal to A,,. if the attitude solution is unique, as we
shall assume. Thus we now have

bi = A[rueri = Aoplri = U‘*V‘T*r" ’ (37)

which gives, upon substitution into equation (36),

z = U2, a[8b, X (Apr) + b X (A,,01)] = U-T%Eai[bix](Aaptari — &b;).

i=1 i=1

(38)

The attitude estimate is unbiased if the expectation value of the attitude estimation error
vector, denoted by E[O], vanishes. This is

E[0] = U.D'E[z] = U.D'UL Y a[b; xJE[A,,br, — 6b,]. (39)
i=1
The errors in each observation vector, assuming their distribution to be axially sym-
metric about the underlying error-free vector, are shown in Appendix A to have the
expectation values
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E[5bi] = —0’17§i7'bibf (40)
and
E[(Sbi)(6bi)7] = oyl -3 - 2Tbi)bibir]v (41)

where o, is the variance of the observation errors in radians squared per axis, and
T, = 1 tends to one as the errors tend to zero. The reference vector errors have the
similar expectation values

E[ér;] = —oimr;, 42)

and
E[(6r;) (6r)"] = ai[l — (3 — 27)r.xT]. (43)

The statistical independence of the different errors gives

E[(8b;) (81,)"] = E[8b;]E[81]], (44)
E[(8b;) (8b,;)] = E[&b,]E[8b]], fori #j, (45)

and
E[(8r;)(8r))"] = E[or;]E[o1]], fori # . (46)

Using equations (40) and (42) in equation (39) gives a vanishing expectation value,
since both terms contain the product [b; x]b; = 0, either explicitly or implicitly from
equation (37). This proves that the attitude estimate is unbiased, to first order in the
errors of the observation and reference vectors.

The covariance of the estimation error angle vector in the spacecraft body frame is

Pys = E[O@O"] = U. D "E[z2"ID'UT; 47)

this matrix is denoted Pge by Shuster, who was the first to provide a statistical analysis
of this problem [5]. With equation (38),

n

E[z7] = UL 3 aia;[b; X JE[(A,,81: — 8b,) (At — 8b;)71[b; < U, .
ij=1

(48)

The only nonvanishing contributions to this expectation value are those arising from the
identity matrix terms in equations (41) and (43); all other terms contain the product
[b; x]b; = O, either explicitly or implicitly from equation (37). Thus the expectation
value is

E[z2"] = UL 2 a¥(o% + a3) [bix][b;xT U, . (49)

i=1

Using the identity
(b, x][b;xF =1 —bbl =1 — b/ V, UL (50)
and assuming that the weights are chosen to be

a; = 0’:72;:/(0'1271‘ + 0'2{ . (51)
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where
n -1
U'xzm = [E (U'gi + 0'31)_1] > (52)
i=1

we find that

E[ZZT] = a?g,E a; I - UT-;-bxrzTV+) = 0',20;(1 - UT-;—BV+) = 0'1201(1 - S’) M
i=1

(53)

Substituting equation (53) into equation (47) gives the final result for the covariance in
the body frame

Pbod)‘=U+PsU£-=UP:UT’ (54)
where the diagonal matrix
P=o,(I —S)D* (55)

is the covariance matrix of the estimation error angle components in the S-frame. The
covariance matrix of the estimation error angle components in the reference frame has
the equally simple form

P = AL Ppy Ay = V. P,VL = VP, VT, (56)

The commutativity of the multiplication of diagonal matrices has been used several
times in equations (54)—(56). We can now see the significance of the S-frame; it is a
frame in which the components of the attitude estimation error vector are uncorrelated.
In the case that the attitude is not uniquely determined, equation (19) represents a
rotation by angle @ about the S-frame axis with infinite covariance. _

The derivation assumes the covariance matrix to be computed from the underlying
error-free reference and observation vectors, which are not known. In practice, we must
compute the covariance using the measured vectors containing errors; this will be
indistinguishable from the true covariance if the loss function is negligible compared
to the smallest diagonal element of D, which means that the attitude is well determined.
Alternate forms of the covariance that are identical if they are computed from error-free
reference and observation vectors give different generalizations if the loss function is
not negligible. This is discussed, with an example, in Appendix B.

Equations (3), (5), and (6) give a useful inequality for the singular values:

tr[E a;(U"b;) (VTri)T]

i=1

E a;(Vr)"(U™,;) = 1. (57)
i=1

The last step reflects the fact that the inner product of two unit vectors, such as V'r;
and U"b;, cannot be greater than unity. We define the optimal measurement geometry
to be the arrangement of measurement and observation vectors that minimizes the trace
of the covariance matrix, which is equal to the sum of the diagonal elements of P, for

S+ s +ss=tS = taUTBV)
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a given total measurement error o,. Then the optimal geometry consistent with equa-
tion (57) is given by

si=85 =5 =1/3, d=1, P, = o}, diag(3/2,3/2,3/2). (58)
The optimal geometry for a rank-two B matrix is
51 =85 =1/2, sy =0, P, = o} diag(2,2,1). (59

This reiterates that B is not required to have full rank to give a good attitude estimate.

Implementation

The proposed solution of Wahba’s problem has the following steps:

(a) Compute B from equation (5)

(b) Find the SVD, equation (6), of B. This is the only computationally expensive
step.

(c) Compute d from equation (14)

(d) Compute A,, from equation (18)

(e) Compute L(A,,) and P, from equations (17), (34), and (55), and other statistics
of interest.

This method was tested on a DEC VAX 11/780, using the LINPACK subroutine
DSVDC [9] for the singular value decomposition. A listing of the FORTRAN 77
implementation is given in [23]. The iterative QR method with shifts, employed in
DSVDC, converged with fewer iterations after a sign error in the shift computation was
corrected; this gave the performance presented below. In principle, the QR method will
converge in a single iteration if the shift used is an exact eigenvalue of the matrix B7B
[6], so DSVDC was modified to shift by the exact solution of the cubic characteristic
equation of BT B. This method failed to converge in a single iteration due to numerical
inaccuracies, so it was abandoned, being no faster on the average than the unmodified
DSVDC.
The tests used the following sets of reference vectors:

r; = [1,0.01,0], r, = (1, -0.01,0] (nearly collinear), (60)
r, =[1,0,0], r, =[0,1,0] (orthogonal) , 61)
r, =[1,0,0], r, = [0,1,0], r; =[0,0,1] (orthogonal) , 62)
r, = [1,0,0], r, =[—0.5,0.8,0], r; = [—0.5,-0.8,0] {coplanar) .
(63)

Larger sets of reference vectors were formed by repeating these vectors, modeling
repeated measurements of two or three references. The observation vectors were given
by equation (2) with
0.352  0.864 0.360
An.=1-0.864 0.152 0.480],
0.360 —0.480 0.800 (64)
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which was chosen to have all nonzero matrix elements with exact decimal representa-
tions, and is otherwise arbitrary. The components of the error vectors €; were given by
random noise uniformly distributed between =0.01. All b; and r; were converted to
true unit vectors and all observations were equally weighted.

For the test cases specified by equations (60)-(64) with »n observations, the SVD
method gave execution times, obtained by averaging over 1000 calls for each case, of:

tsyp = [11 + 05(71, - 2)] msec (65)
with only two distinct reference vectors (equations (60) and (61)),
tsyp = [21 + 0.5(n — 3)] msec (66)

with a B matrix of full rank (equation (62)), and intermediate values with three coplanar
reference vectors (equation (63)). For these test cases, the SVD method always con-
verged to the optimal estimate.

Shuster’s implementation of Davenport’s g-method was applied to the same test
cases, giving execution times of

t, = [2.3 + 0.5(n — 2) + 0.2n,,,] msec, (67)

where n;,, is the number of Newton-Raphson iterations, usually 1 or 2, used to compute
the maximum eigenvalue of the 4 X 4 matrix. This algorithm also converged to the
optimal estimate for all the test cases. It is significantly faster than the SVD method due
to the fact that it contains no iterative matrix computations, only a scalar iteration for
the maximum eigenvalue. Other values of A,,, and €; were tested with similar results,
except that the SVD method showed shorter execution times when €; = 0 and A,,. had
zero elements, resulting in zero matrix elements in B.

Conclusions

A new method for finding the attitude matrix minimizing Wahba’s loss function has
been presented. This method, based on the singular value decomposition of a 3 X 3
matrix, requires no approximations, is numerically stable for matrices of rank two or
three, and gives a convenient method for computing the covariance of the attitude
estimate. It shares these advantages with Shuster’s implementation of Davenport’s
g-method, which is faster than the new method. The singular value decomposition
method has the advantage of giving the eigenvalues and eigenvectors of the covariance
matrix, which are often useful for analysis, since the maximum eigenvalue and its
eigenvector give the magnitude and direction of the largest component of the attitude
uncertainty,

Appendix A-Unit Vector Error Model

Let x,.. be an error-free unit vector and choose a coordinate system such that

Xpme = 10,0, 1T . (A1)
The corresponding vector containing measurement €ITors is
Xmeaswred = LSiN 8 cos ¢, sin @ sin ¢, cos §]" (A2)

with some probability represented by a density function p(6, ¢) over the unit sphere.



Attitude Determination using Vector Observations and the SVD 255

The polar coordinate 6 should be distinguished from the estimation error angle vector
©O defined in the text. The error in x is

8X = Xpmeasured — Xpue = [5ID O coOs ¢, sin @ sin ¢, —(1 — cos ). (A3)

We assume that the error distribution is axially symmetric about X,,,., which means that
the probability distribution is independent of ¢ ; this assumption is discussed by Shuster
[51. Averages over ¢ are trivial in this case, and we need the following averages
over 6;

o’ = WKE[sin*4], (A4)
r = E[1 — cos 8]/a?, ' (AS)

and
E[(1 — cos 8)*] = E[2(1 — cos §) — sin*f] = 20t ~ 1). (A6)

With these relations, it is easy to show that

E[6x] = =0T Xpue (A7)

and
E[(8%) (8%)T] = oI — (3 = 27)XueXin] - (A8)

Equations (A7) and (A8) are expressed in a form that is independent of the coordinate
system. The only assumption needed in this derivation was axial symmetry; nothing
was assumed about the estimation error distribution in 6.

For small errors, the probability will be concentrated near # = 0, and o will tend
to zero. In this limit o can be interpreted as the variance of the angular errors about
the two axes perpendicular to X,,,, in radians squared per axis. Equation (A6) shows that
7 = 1, and small angle approximations for sine and cosine can be used to show that
T tends to unity in the limit of vanishing errors. The expectation value of 1 — cos 6
vanishes only if the probability is concentrated at § = 0, so §x cannot be unbiased
except in the limit of zero errors; this follows from the constraint that both X,,..5..s and
X, are unit vectors. Equation (A7) shows that for small errors the expectation value
of the error vector is proportional to the variance of the angular errors, which is to say
that it is of second order in the standard deviation of the angular errors.

Appendix B-Alternate Forms of the Covariance

If the B matrix is formed from error-free reference and observation vectors, then
Aupr = Ay, the loss function is zero, and

‘ D=1-S5 (B1)
from equati(;n (34). The matrix P; is equal to |
P, = oL D! (B2)
and

P= ol —S8). (B3)
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Shuster’s expression for the covariance matrix is [5]
P99 = 0',20,(1 - M)—l ’ (B4)

where M is the matrix defined in equation (22). Equations (15), (18), and (21) give,
with no errors and A,,, = A

Py = Ulot(l = S")7'UL, (BS)

which is identical to the covariance given by equations (54) and (B3). Thus we have
four different forms of the covariance that are identical if they are computed from
error-free reference and observation vectors. When computed from measured vectors
containing errors, they give indistinguishable results if the loss function is negligible
compared to the smallest diagonal element of D, which means that the attitude is well
determined. Equation (55) gives the best estimate of the errors to be expected, though,
when the loss function is not negligible, as we will show with an example.

We will compute the covariance matrix for a simple case of two vector observations
with identical noise characteristics, and therefore equal weights. The reference and
observation vectors can be written without loss of generality as

b, = R,[cos B, sin 8,0T, b, = R,[cos B, —sin B, 0], (B6)
r, = R,[cos a,sin a, 0], r, = R,[cos a, —sin «, 0], (B7)

where R, and R, are proper orthogonal matrices and a and 8 ate angles between zero
and 77 /2. Substitution of these vectors into equation (5) gives equation (15) with

S’ = diag(cos a cos B, sin a sin B,0), (B8)
U.=R,, and V., =R,. (B9)

The singular values s, and s, may not be in the order specified by equation (8), but this
is of no importance. The minimized Wahba loss function for this example is

L(A,) =1 —cos(a — B), (B10)

which is zero if and only if @« = B. This condition is equivalentto b, - b, = r, - r, and
gives an A,, such thatb; = A,,r; for: = 1 and 2.

The diagonal elements of the matrix o, U’ Py,4 U. computed using equations (55),
(B2), (B3), and (B4) are collected in Table B1. Some trigonometric identities have been
employed to arrive at the forms displayed. All the entries in any column of this table
areequal if @« = B. If a = B, K, = Y fori = 1,..., 4 and the differences in the
entries in any column are small except for values of the 11 element when ¢ = 8 = 0
and values of the 22 element when @ =~ 8 = /2. Both of these cases are for nearly
collinear observations. Consider the 11 element; the argument for the 22 element is
similar. Even though a = @, the values of 1/sin a and 1/sin 8 can differ by orders
of magnitude if both of these angles are close to zero. We expect the estimation errors
to be amplified if the geometry of either the measured vectors or the reference vectors
is poor, that is if either pair is nearly collinear. In particular, if the covariance matrix
is to give a useful estimate of the estimation errors to be expected with the actual mea-
surements, its 11 element should have terms proportional to both sin"?a and sin™?8.
The only form of the covariance in Table B1 with this property is the form given by
equation (55), which is why we prefer this form to the alternatives.
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Table B1. Alternate Forms of the Covariance for Two Observations

Equation 11 Element 22 Element 33 Element
(55 K, sin"?a + K, sin™B K; cos2a + K, cos 8 1/cos’(a — B)
(B2) (sin & sin B)7" (cos a cos B)" 1/cos(a — B)
(B3) (K, sin’8 + K sin’a)”! (K5 cos’B + K, cos*a)”! 1
(B4) sin™? cos™? 1
K, = (1 + cos’@)/(1 + cos a cos B), K, = %(1 + cos’B)/(1 + cos & cos B),
K; = ¥5(1 + sin’a)/(1 + sin a sin 8), Ky = ¥(1 + sin?8)/(1 + sin a sin B).
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