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HOW TO ESTIMATE ATTITUDE 
FROM VECTOR OBSERVATIONS 

F. Landis Markley* and Daniele Mortari† 

The most robust estimators minimizing Wahba’s loss function are Davenport’s  
q method and the Singular Value Decomposition method. The q method, which 
computes the optimal quaternion as the eigenvector of a symmetric 4 4 matrix 
with the largest eigenvalue, is somewhat faster. The fastest algorithms, the 
QUaternion ESTimator (QUEST) and the EStimators of the Optimal Quaternion 
(ESOQ and ESOQ2), are less robust since they solve the characteristic 
polynomial equation for the maximum eigenvalue. This is only an issue for 
measurements with widely differing accuracies, so these estimators are well 
suited to star trackers that track multiple stars with comparable accuracies. 

WAHBA’S PROBLEM 

In many spacecraft attitude systems, the attitude observations are naturally represented as unit vectors. 
Typical examples are the unit vectors giving the direction to the sun or a star and the unit vector in the 
direction of the Earth’s magnetic field. Almost all algorithms for estimating spacecraft attitude from vector 
measurements are based on minimizing a loss function proposed in 1965 by Grace Wahba1:  

Wahba’s problem is to find the orthogonal matrix A with determinant +1 that minimizes the loss function 

 L(A) 1
2 ai bi Ari

2

i
. (1) 

where {bi} is a set of unit vectors measured in a spacecraft’s body frame, {ri} are the corresponding unit 
vectors in a reference frame, and {ai} are non-negative weights. In this paper we choose the weights to be 
inverse variances, ai = i

2 , in order to relate Wahba’s problem to Maximum Likelihood Estimation2. This 

choice differs from that of Wahba and many other authors, who assumed the weights normalized to unity. 

The purpose of this paper is to give an overview of the most popular and most promising algorithms in a 
unified notation, and to provide accuracy and speed comparisons. 

ORTHOGONAL PROCRUSTES PROBLEM 

It is possible and has proven very convenient to write the loss function as 

 L(A) = aii
tr(AB T )    (2) 

with   
 B aibiri

T

i
. (3) 

Now it is clear that L(A) is minimized when the trace, tr(ABT), is maximized. 

This has a close relation to the orthogonal Procrustes problem, which is to find the orthogonal matrix A that 
is closest to B in the sense of the Frobenius (or Euclidean, or Schur, or Hilbert-Schmidt) norm3 
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so Wahba’s problem is equivalent to the orthogonal Procrustes problem with the proviso that the 
determinant of A must be +1. 

FIRST SOLUTIONS 

J. L. Farrell and J. C. Stuelpnagel presented the first solution of Wahba’s problem 4. They noted that any 
real matrix, including B, has the polar decomposition  

 B = WH, (6) 

where W is orthogonal and H is symmetric and positive semidefinite. Then H can be diagonalized by  

 H = VDVT,  (7) 

where V is orthogonal and D is diagonal with elements arranged in decreasing order. The optimal attitude 
estimate is then given by 
 Aopt = WV diag[1  1  detW] VT. (8) 

In most cases, detW is positive and Aopt = W, but this is not guaranteed. 

R. H. Wessner proposed the alternate solution5: 

  Aopt = (BT)–1(BTB)1/2,  (9) 
which is equivalent to  
 Aopt = B(BTB)–1/2.  (10) 

Equations (9) and (10) have the disadvantage of requiring B to be non-singular, which means that a 
minimum of three vector observations must be available, although it is well known that two vector 
observations are sufficient to determine the attitude. 

J. R. Velman6, J. E. Brock7, R. Desjardins, and Wahba also provided solutions to Wahba’s problem. 

UNCONSTRAINED LEAST-SQUARES 

Wahba’s loss function can be minimized without requiring the orthogonality constraint by 

 Aunconstrained = B( airiri
T

i
) 1. (11) 

This gives the representation 

 B = Aunconstrained ( airiri
T

i
),  (12) 

which looks like the polar decomposition, but isn’t really, because Aunconstrained is only approximately 
orthogonal. Note that Eq. (11), like Eqs. (9) and (10), requires three vectors, while only two are really 
necessary. This solution was proposed by Brock8 and has been analyzed by Markley and Bar-Itzhack9.  

DAVENPORT’S q METHOD 

None of the early solutions of Wahba’s problem was widely applied, to our knowledge. Paul Davenport 
provided the real breakthrough in applying Wahba’s problem to spacecraft attitude determination10,11.  

We can parameterize A by a unit quaternion12,13 
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as 

 A = (q4
2 q

2
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This representation of the attitude matrix is a homogenous quadratic function of q, so we can write 

 tr(ABT ) = qTKq     (15) 
where K is the symmetric traceless matrix 
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with    
 S B + BT  (17) 
and 
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It is easy to prove that the optimal unit quaternion is the normalized eigenvector of K with the largest 
eigenvalue, i.e., the solution of 
  Kqopt maxqopt . (19) 

Very robust algorithms exist to solve the symmetric eigenvalue problem3,14. They tend to be slow but are 
trivial to implement (and fast) in MATLAB. There is no unique solution if the two largest eigenvalues of K 
are equal. This is not a failure of the q method; it means that the data aren’t sufficient to determine the 
attitude uniquely.  

QUATERNION ESTIMATOR (QUEST) 

Equation (19) is equivalent to the two equations 

 [( max + trB)I S ]q = q 4z  (20) 
and 
 ( max trB)q4 = q

Tz  (21) 

Equation (20) gives 

 q = q4 [( max + trB)I S ] 1z = q4 {adj[( max + trB)I S ]z} det[( max + trB)I S ] .  (22) 

The Cayley-Hamilton theorem for a general 3 3 matrix G states that3 

 G3 (trG)G2
+ [tr(adjG)]G (detG)I = 0 , (23) 

where adjG is the classical adjoint (adjugate) of G. This can be used to express the adjoint  as 

 adjG = G2 (trG)G + [tr( adjG)] I . (24) 

In particular 

 adj[( max + trB)I S ] = I + S + S 2 ,  (25) 

where 

 max
2 (trB)2 + tr(adjS)  (26) 

and 
 max trB . (27) 

We also have  
 det[( max + trB)I S ] = ( max + tr B) det S . (28) 

The optimal quaternion is then given by15,16 
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1
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 , (29) 



where 
 x ( I + S + S2 )z . (30) 

All these computations require knowledge of max. This is obtained by substituting Eq. (22) into Eq. (21), 
which yields the equation: 
 0 = ( max ) ( max trB) zT ( I + S + S2 )z . (31) 

Substituting Eqs. (26–28) gives a fourth-order equation for max. This is simply the characteristic equation 
det(K max I) = 0 , which can be solved analytically. Shuster observed, however, that max is very close to 

 0 aii
 (32) 

if the optimized loss function 

 L(Aopt ) = o max  (33) 

is small, so that max can be easily obtained by Newton-Raphson iteration, starting from 0 as  the initial 
estimate15,16. In fact, a single iteration is generally sufficient. But numerical analysts know that solving the 
characteristic equation is one of the worst ways to find eigenvalues, in general, so QUEST is in principle 
less robust than Davenport’s original q method. 

The optimal quaternion is not defined by Eq. (29) if  

 2
+ x

2
= 0 , (34) 

so Shuster devised the method of sequential rotations to handle this case15–17. It is desirable to have a 
precise criterion for limiting the number of sequential rotations performed, since these are somewhat 
expensive computationally. Substituting Eq. (30) into Eq. (34) and applying the Cayley-Hamilton theorem 
twice to eliminate S4 and S3 gives, after some tedious algebra,   

 2
+ x

2
= (d / d ) , (35) 

where ( ) is the quartic function defined implicitly by Eq. (31). It can be shown that d / d  is invariant 
under rotations, and this quantity must be nonzero for the Newton-Raphson iteration for max to be 
successful. The singular condition of Eq. (34) is thus seen to be equivalent to  = 0, which means that 
(qopt )4 = 0  and the optimal attitude represents a 180˚ rotation. We can always use sequential rotations to 
find a  such that 
 (qopt )4 > qmin  (36) 

for any qmin in (0, 1/2), by insisting that 

 > qmin
2 (d / d ) . (37) 

In practice, qmin = 0.1 is adequate to avoid loss of significance in the computation.  

Shuster also provided an estimate of the covariance of the rotation angle error vector in the body frame, 

 
P = ai (I bibi

T )
i[ ]

1

. (38) 

and showed that the optimized loss function L(Aopt )  obeys a chi-square probability distribution to a good 
approximation, assuming Gaussian measurement errors. This provides a useful data quality check. QUEST, 
first applied in the MAGSAT mission in 1979, is the most widely used algorithm for Wahba’s problem. 

SINGULAR VALUE DECOMPOSITION (SVD) METHOD 

The matrix B has the Singular Value Decomposition3:   

 B = U VT = U diag[ 11  22  33] V
T, (39) 



where U and V are orthogonal, and the singular values obey the inequalities  11  22  33  0. Then 

 tr(ABT ) = tr(A V diag[ 11 22 33 ]U
T ) = tr(U TA V diag[ 11 22 33 ] ) . (40) 

The trace is maximized, consistent with the constraint det A = 1, by 

 UTAopt V = diag[1 1 (detU)(detV)] , (41) 

which gives the optimal attitude matrix18,19:  

 Aopt = U diag[1 1 (detU )(det V)]V T . (42) 

The SVD solution is completely equivalent to the original solution by Farrell and Stuelpnagel, since      Eq. 
(42) is identical to Eq. (8) with U = WV. The difference is that robust SVD algorithms exist now3,14.   In 
fact, computing the SVD is one of the most robust numerical algorithms.  

It is convenient to define 
 s1   11, s2   22,  and s3  (detU)(detV)  33,  (43) 

so that s1  s2  |s3|. The attitude error covariance is given by 

 P = U diag[(s2 + s3 )
1 (s3 + s1 )

1 (s1 + s2 )
1]U T .  (44) 

The eigenvalues of Davenport’s K matrix, max 1 2 3 4 , are related to the singular values by10  

 1 = s1 + s2 + s3,    2 = s1 – s2 – s3,    3 = – s1 + s2 – s3,     4 = – s1 – s2 + s3. (45)  

The eigenvalues sum to zero because K is traceless. The singularity (unobservability) condition, which is 
the condition of infinite covariance, is     
 s2 + s3 = 0. (46) 

This is equivalent to 1 = 2, the previously-stated unobservability condition for Davenport’s q method. 

FAST OPTIMAL ATTITUDE MATRIX (FOAM) 

The SVD decomposition of B gives a convenient representation for adjB, detB, and B F

2
. These can be 

used to write the optimal attitude matrix as20,21 

 Aopt = ( max det B) 1[( + B F

2
)B + maxadjB

T BBTB] , (47)  

where  
 1

2 ( max
2 B F

2
) . (48) 

It’s important to note that all the quantities in Eqs. (47) and (48) can be computed without performing the 
SVD of B. In this method, max  is found from 

 max = tr(AoptB
T ) = ( max detB) 1

+ B F

2( ) B F

2
+ 3 max det B tr BBTBBT( )[ ], (49)  

or 
 0 = ( max ) ( max

2 B F

2
)2 8 max det B 4 adjB F

2
, (50) 

which follows from some matrix algebra. Equations (31) and (50) for ( max )  would be numerically 

identical with infinite-precision computations, but the FOAM form of the coefficients is less subject to 
errors arising from cancellations in finite-precision computations. 

The FOAM algorithm gives the convenient form for the error covariance: 

 P = ( max det B) 1 ( I + BBT ) . (51) 



ESTIMATOR OF THE OPTIMAL QUATERNION (ESOQ) 

Davenport’s eigenvalue equation, Eq. (19), says that the optimal quaternion is orthogonal to all the columns 
of the matrix  K maxI , which means that it must be in the one-dimensional subspace orthogonal to the 
subspace spanned by any three columns of K maxI . The optimal quaternion is conveniently computed as 

the generalized four-dimensional cross-product of any three columns of this matrix22-24. This is possible, of 
course, because the four columns of K maxI  are not linearly independent. 

Another way of seeing this result is to examine the classical adjoint of K maxI . Representing K in terms 
of its eigenvalues and eigenvectors gives 

 adj(K I) = adj ( i )qi qi
T

i=1

4 

 
 

 

 
 = ( j ) ( k ) ( l )qi qi

T

i=1

4

, (52) 

for any scalar , where {i, j, k, l} is a permutation of {1, 2, 3, 4}. Setting = max 1  causes all the terms 

in this sum to vanish except the first, with the result 

 adj(K maxI) = ( 2 max )( 3 max )( 4 max )qoptqopt
T  (53) 

Thus qopt can be computed by normalizing any non-zero column (indexed by k) of adj(K maxI) :  

 
  
(qopt )i = c( 1)

k+ i det[(K maxI)k i] i = 1, ,4,  (54) 

where (K maxI)k i   is the 3 3 matrix obtained by deleting the kth row and ith column from K maxI , 
and c is a multiplicative factor determined by normalizing the quaternion. It is desirable to choose the 
column with the maximum Euclidean norm. Because of the symmetry of K, it is only necessary to examine 
the diagonal elements of the adjoint to determine which column to use.  

SECOND ESTIMATOR OF THE OPTIMAL QUATERNION (ESOQ2) 

The relation of the quaternion qopt to the rotation axis e and rotation angle  is 

 qopt =
e sin( / 2)

cos( / 2)

 

 
 

 

 
 . (55) 

Inserting this into Eqs. (20) and (21) gives 

 ( max trB) cos( / 2) = zTe sin( / 2)  (56) 
and 
 z cos( / 2) = [( max + trB)I S ]e sin( / 2)  (57) 

Multiplying Eq. (57) by ( max trB)  and substituting Eq. (56) gives 

 Me sin( / 2) = 0 , (58) 
where 
 

  
M ( max trB)[( max + trB)I S ] zz T = [m1 m2 m3 ] . (59) 

These computations lose numerical significance if ( max trB)  and z are close to zero, which would be the 
case for zero rotation angle. We can always avoid this singular condition by using one of the sequential 
reference system rotations to ensure that trB is less than or equal to zero 15–17. Then Eq. (58) says that the 
rotation axis is a null vector of M. The columns of adj M are the cross products of the columns of M: 

 
  
adjM = [m2 m3 m3 m1 m1 m2 ]. (60) 

Because M is singular, all these columns are parallel, and all are parallel to the rotation axis e. Thus we set 

 e = y y , (61) 



where y is the column of adjM  (i.e., the cross product) with maximum norm. It is only necessary to 
examine the diagonal elements of the adjoint matrix to determine which column to use. The rotation angle 
is found from Eq. (56) or one of the components of Eq. (57). The use of a rotated reference system to 
ensure a non-positive trB makes Eq. (56) the best choice. With Eq. (61), this can be written 

 ( max trB) y cos( / 2) = (z y)sin( / 2), (62) 

which means that there is some scalar h for which 

 cos( / 2) = h (z y)  (63) 

and 
 sin( / 2) = h ( max tr B) y . (64) 

Substituting into Eq. (55) gives the optimal quaternion as25,26 

 qopt =
1

( max trB) y
2

+ (z y)2
( max trB)y

z y
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Note that it is not necessary to normalize the rotation axis. The rotation of the reference frame is trivially 
“undone” by permuting quaternion components, as in QUEST15–17. ESOQ2 does not define the rotation axis 
uniquely if M has rank less than two. This includes the usual case of unobservable attitude and also the case 
of zero rotation angle. Requiring trB to be non-positive avoids zero rotation angle singularity, however. 

TWO-OBSERVATION CASE 

If only two observations are used, B is of rank two, so det B = 0. It is clear from Eq. (50) that the 
characteristic equation is a quadratic equation in max

2  in this case. The solution can be written as16 

 max = a1
2
+ a2

2
+ 2a1a2 [(b1 b2 )(r1 r2 ) + b1 b2 r1 r2 ]  . (66) 

This speeds up all methods that require a solution of the characteristic equation: namely QUEST, FOAM, 
ESOQ, and ESOQ2. The simplification in FOAM is especially nice, since it gives an explicit solution for 
the optimal attitude estimate20,21 

 Aopt = b3r3
T
+ a1 max( )[b1r1

T
+ (b1 b3 )(r1 r3 )

T ] + a2 max( )[b2r2
T
+ (b2 b3 )(r2 r3 )

T ], (67) 

where  
 b3 (b1 b2 ) b1 b2  (68) 

and 
 r3 (r1 r2 ) r1 r2 . (69) 

It should be emphasized that the minimized loss function, Eq. (1), contains only two observations. The 
“pseudo-observation” represented by b3  and r3  arises automatically from the term adjBT  in FOAM. 
Equation (67) goes over to the TRIAD11,16,27,28 solution for a1 = 0, a2 = 0, or a1 = a2. 

SEQUENTIAL METHODS: Filter QUEST 

When observations are obtained over a range of times, it is often convenient to employ a filter that 
propagates the attitude information from the past to the current time and then adds the information from 
current measurements. Shuster pointed out that the nine components of the “attitude profile matrix” B 
contain full information about the attitude (with three degrees of freedom) and the angular error  covariance 
(with six independent components)2. He proposed the Filter QUEST algorithm29, based on propagating and 
updating B: 

 B(tk ) = μ 3 3 (tk , tk 1 )B(tk 1 ) + aibiri
T

i
,  (70) 

where 3 3 (tk , tk 1 )  is the state transition matrix for the attitude matrix, μ < 1 is a “fading memory” factor, 
and the sum is over observations at time tk. 



Recursive QUEST 

An alternative sequential algorithm, Recursive QUEST or REQUEST, propagates and updates Davenport’s 
K matrix by30 

 K(tk ) = μ 4 4 (tk , tk 1 )K(tk 1) 4 4
T (tk ,tk 1 ) + ai

˜ K ii
,  (71) 

where 4 4 (tk , tk 1 )  is the quaternion state transition matrix and ˜ K i  is the Davenport matrix for a single 
observation, 

 ˜ K i
biri

T
+ ribi

T (bi ri )I (bi ri )

(bi ri )
T bi ri
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Filter QUEST and REQUEST are mathematically equivalent, but Filter QUEST requires fewer 
computations. Neither has been competitive with an extended Kalman filter in practice, largely due to the 
suboptimality of the fading memory approximation to the effect of process noise. 

The Quaternion Projection Algorithm of Reynolds 

Reynolds has proposed a sequential algorithm based on projections in quaternion space, which begins with 
the observation that the quaternion using the minimum-angle rotation to map the reference vector ri into the 
body frame vector bi is 

 q1
1

2(1+ bi ri )

bi ri
1 +bi ri
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The most general quaternion that maps ri into bi is 

 q =
bi sin( b / 2)

cos( b / 2)
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 q2 ,  (74) 

where b  and r  are arbitrary angles of rotation about bi and ri, respectively, = b + r , and 

 q2
1

2(1+ bi ri )

bi + ri
0

 

 
 

 

 
 . (75) 

The quaternion q2 maps ri into bi by means of a 180° rotation about the bisector of bi and ri. The order of 
quaternion multiplication in Eq. (74) results from using Shuster’s quaternion product convention 13,31: 

 p q =
p
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p4q4 p q
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Equation (74) expresses q as a linear combination of the two orthogonal quaternions q1 and q2, which 
constitute an orthogonal basis for the two-dimensional subspace of four-dimensional quaternion space 
consistent with the measurement. The projection matrix onto this two-dimensional subspace is 

 q1q1
T
+ q 2q2

T
=

1
2 (I + ˜ K i ) . (77) 

where ˜ K i  is defined by Eq. (72). Note that ˜ K i  is nonsingular if bi ri = 1 , even though both q1 and q2 are 
undefined in this case. The Reynolds algorithm updates the quaternion estimate by32,33 

 q +
= (I + ˜ K i )q[ ] ( I + ˜ K i )q ,  (78) 

where q  is the pre-update quaternion estimate propagated to the time of the current measurement, and  is 

an update gain. We set  = 1 for perfect measurements to project onto the desired subspace, and 0 <  < 1 
for filtering. An extended exercise in quaternion algebra shows that Eq. (78) is equivalent to 

 q +
= q q , (79)  



where 

 q
1

1 + 2 bi [A(q )ri ]+
2

bi [A(q )ri ]

1 + bi [A(q )ri ]

 

 

 
 

 

 

 
 
. (80) 

For  = 1, q is the quaternion that takes A(q )ri  into bi using the minimal rotation. In the opposite limit of 

small , Eq. (79) looks like a Kalman filter update with a cross-product measurement model31. We note, 
though, that Eqs. (72) and (78) are significantly less burdensome computationally than Eqs. (79) and (80). 

ACCURACY 

We test the accuracy of MATLAB implementations of the q method, the SVD method, QUEST, ESOQ, 
ESOQ2, and FOAM, using simulated data. The q and SVD methods use the MATLAB functions eig and 
svd, respectively, and the others were coded using the equations in this paper, with the approximation 

max = 0  (no iterations) or with one or two Newton-Raphson iterations of the quartic equation for max. 
We will analyze three test scenarios. The first scenario simulates a single star tracker with a narrow field of 
view and boresight at [1, 0, 0]T. This is an application for which the QUEST algorithm has been widely 
used. We assume that the tracker is tracking five stars at 
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We simulate 1000 test cases with uniformly distributed random attitude matrices. We use these attitude 
matrices to map the five observation vectors to the reference frame, add Gaussian random noise with equal 
standard deviations of 6 arcseconds per axis to the reference vectors, and then normalize them. The errors 
are unconventionally applied to the reference vectors rather than the observation vectors so that Eq. (81) 
will remain valid in the presence of noise.  

The loss function was computed with measurement variances in (radians)2, since this results in 2L(Aopt )  

approximately obeying a 2 distribution with 2nobs 3  degrees of freedom, where  nobs  is the number of 

vector observations34. The minimum and maximum values of the loss function in the 1000 test runs were 

0.23 and 12.1, respectively. The probability distribution of the loss function is plotted as the solid line in 

Figure 1, and several values of P( 2 | ) for 2
= 2L(Aopt )  and = 7  are plotted as circles35. The 

agreement is seen to be excellent. 

The estimation errors for the star tracker scenario are presented in Table 1. The roll error (x axis rotation) 
and pitch/yaw error  (rotation about an axis in the y-z plane) in arcseconds are presented separately, since 
the estimates of pitch and yaw transverse to the star tracker boresight are more accurate than the estimate of 
the roll rotation about the boresight. The q method and the SVD method should both give the truly optimal 
solution, since they are based on robust matrix analysis algorithms3,14. The q method was taken as optimal 
by definition, so no estimated-to-optimal differences are presented for that algorithm, and the differences 
between the SVD and q methods provide an estimate of the computational errors in both methods. In 
particular, the loss function is computed exactly by both methods, in principle, which means in practice that 
it is computed to about one part in 105. No estimate of the loss function is provided when no update of max 
is performed, accounting for the lack of entries in the loss function column in Table 1 for these cases. 

Not all the decimals exhibited are significant, since the results of 1000 different random cases would not 
agree to more than two decimal places. The extra decimal places are shown to emphasize the fact that 
although the different algorithms give results that are closer or farther from the optimal estimate, all the 
algorithms provide estimates that are equally close to the true attitude. The differences between the 
estimated and optimal values also show that one Newton-Raphson iteration for max is always sufficient; a 
second iteration provides no significant improvement in the estimate for this scenario. 
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Figure 1: Empirical (solid line) and Theoretical (dots) Loss Function Distribution 

for the Seven-Degree-of-Freedom Star Tracker Scenario  

Table 1: Estimation Errors for Star Tracker Scenario 
RSS (max) estimated-to-optimal RSS (max) estimated-to-true Algorithm 

max iterations loss function x (arcsec) yz (arcsec) x (arcsec) yz (arcsec) 

q — — — — 39.328 (152.83) 3.7895 (13.392) 

SVD — 0.4 (1.8)  10-5 1.5 (9.4)  10-8 0.8 (3.4)  10-10 39.328 (152.83) 3.7895 (13.392) 

0 — 1.5 (12)  10-2 9.8 (54)  10-5 39.328 (152.87) 3.7895 (13.392) 

1 2.5 (7.2)  10-5 9.6 (47)  10-8 0.6 (2.5)  10-9 39.328 (152.83) 3.7895 (13.392) 

 

QUEST 

2 2.9 (8.9)  10-5 11 (62)  10-8 0.7 (3.2)  10-9 39.328 (152.83) 3.7895 (13.392) 

0 — 1.5 (12)  10-2 9.8 (54)  10-5 39.328 (152.87) 3.7895 (13.392) 

1 2.5 (7.3)  10-5 9.4 (48)  10-8 1.1 (6.6)  10-9 39.328 (152.83) 3.7895 (13.392) 

 

ESOQ 

2 2.9 (8.9)  10-5 11 (55)  10-8 1.1 (5.5)  10-9 39.328 (152.83) 3.7895 (13.392) 

0 — 1.5 (12)  10-2 9.8 (54)  10-5 39.328 (152.87) 3.7895 (13.392) 

1 2.5 (7.2)  10-5 9.5 (48)  10-8 0.7 (2.8)  10-9 39.328 (152.83) 3.7895 (13.392) 

 

ESOQ2 

2 2.9 (9.3)  10-5 11 (55)  10-8 0.7 (3.3)  10-9 39.328 (152.83) 3.7895 (13.392) 

0 — 1.5 (12)  10-2 9.8 (54)  10-5 39.328 (152.87) 3.7895 (13.392) 

1 0.4 (1.9)  10-5 1.5 (9.6)  10-8 2.5 (12)  10-9 39.328 (152.83) 3.7895 (13.392) 

 

FOAM 

2 0.4 (1.9)  10-5 1.5 (9.6)  10-8 2.6 (11)  10-9 39.328 (152.83) 3.7895 (13.392) 



Equation (38) gives the covariance for the star tracker scenario as 

 P = (6arcsec )2[5I bi
i= 1

5

bi
T ] 1 = diag[1565, 7.2, 7.2]arcsec 2 , (82) 

which gives the standard deviations of the attitude estimation errors as 

 x = 1565 arcsec = 40arcsec and yz = 7.2 + 7.2 arcsec = 3.8arcsec . (83) 

It is apparent that this covariance estimate is quite accurate. 

The second scenario uses three observations with widely varying accuracies to provide a difficult test case 
for the algorithms under consideration. The three observation vectors are 

 b1 =

1

0

0

 

 

 

 

 

 

 

 

 

 

, b2 =

0.99712

0.07584

0

 

 

 

 

 

 

 

 

 

 

, and b3 =

0.99712

0.07584

0

 

 

 

 

 

 

 

 

 

 

. (84) 

We simulate 1000 test cases as in the star tracker scenario, but with Gaussian noise of one arcsecond per 
axis on the first observation, and one degree per axis on the other two. This would be the case if the first 
observation were obtained from an onboard astronomical telescope, and the other two observations were 
from a coarse sun sensor and a magnetometer, for example. A very accurate estimate of pitch and yaw is 
required in such an application, but the roll attitude determination is expected to be fairly coarse. 

The minimum and maximum values of the loss function computed by the q method in the 1000 test runs 

were 0.003 and 8.5, respectively. The probability distribution of the loss function is plotted as the solid line 

in Figure 2, and several values of the 2  distribution with three degrees of freedom are plotted as circles. 

The agreement is almost as good as the seven-degree-of-freedom case. 

The estimation errors for this scenario are presented in Table 2, which is similar to Table 1 except that the 
roll errors are given in degrees. The agreement of the q and SVD method computations is virtually identical 
to their agreement for the star tracker scenario, but the other algorithms show varying performance. The 
iterative computation of max in QUEST, ESOQ, and ESOQ2 is extraordinarily poor. These algorithms all 
use the Eq. (50), but with different reference frames, to solve for max. Surprisingly, this has very little 
effect on the pitch and yaw determination, but roll determination is affected by an inaccurate computation 
of max. The best results of QUEST, ESOQ, and ESOQ2 are all obtained by not performing any iterations 
for max; roll determination using the updated max is basically useless, with errors attaining their maximum 
possible value of 180°. The iterative computation of max in FOAM is reliable and improves the agreement 
with the optimal estimate, but does not result in noticeably better agreement with the true attitude. 

The failure of the iterative solution for max suggests that the analytic solution35 might be preferable. This is 
not the case, though, since the errors arise from inaccurate values of the coefficients of the quartic 
characteristic equation, not from the solution method. In fact, the analytic formulas often give complex 
solutions in this scenario, which is theoretically impossible for the eigenvalues of a real symmetric matrix. 
The FOAM computation is more reliable because its characteristic equation coefficients are more accurate. 

The predicted covariance in this scenario is, to a very good approximation, 

 P = diag[ 12 (1 0.997122) 1 deg 2 ,1 arcsec 2 ,1 arcsec 2 ], (85) 

which gives 
 x = 9.3 deg and yz = 1.4 arcsec , (86)  

in agreement with the best results in Table 2.  
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Figure 2: Empirical (solid line) and Theoretical (dots) Loss Function Distribution  
for the Three-Degree-of-Freedom Unequal Measurement Weight Scenario 

Table 2: Estimation Errors for Unequal Measurement Weight Scenario 
RSS (max) estimated-to-optimal RSS (max) estimated-to-true Algorithm 

max iterations loss function x (deg) yz (arcsec) x (deg) yz (arcsec) 

q — — — — 9.6 (40) 1.424 (4.519) 

SVD — 1.7 (9.3)  10-5 1.5 (8.7)  10-5 0.8 (3.4)  10-10 9.6 (40) 1.424 (4.519) 

0 — 1.5 (16) 0.0003 (0.0047) 9.4 (39) 1.424 (4.519) 

1 766 (2752)  55 (180) 0.0024 (0.013) 44 (91) 1.424 (4.520) 

 

QUEST 

2 11387 (1034977) 55 (180) 0.035 (3.1) 44 (91) 1.425 (4.520) 

0 — 1.5 (16) 0.0048 (0.029) 9.4 (39) 1.424 (4.520) 

1 733 (2759)  56 (180) 0.0046 (0.12) 44 (91) 1.424 (4.520) 

 

ESOQ 

2 8847 (786903) 55 (180) 0.026 (2.2) 44 (91) 1.425 (4.520) 

0 — 1.5 (13) 0.0011 (0.011) 9.7 (44) 1.424 (4.519) 

1 734 (2759) 104 (180) 0.0022 (0.011) 65 (92) 1.424 (4.521) 

 

ESOQ2 

2 6488 (381771) 104 (180) 0.020 (1.0) 65 (93) 1.425 (4.520) 

0 — 1.5 (13) 0.0076 (0.042) 9.7 (44) 1.424 (4.512) 

1 0.096 (2.3) 0.088 (1.7) 0.0082 (0.050) 9.6 (40) 1.424 (4.518) 

 

FOAM 

2 0.0018 (0.14) 0.0015 (0.11) 0.0082 (0.039) 9.6 (40) 1.424 (4.516) 



The third scenario investigates the effect of measurement noise mismodeling, illustrating problems that first 
appeared in analyzing data from the Upper Atmosphere Research Satellite36. Of course, no one would 
intentionally use erroneous models, but it can be very difficult to determine an accurate noise model for 
real data, and the assumption of any level of white noise is often a poor approximation to real measurement 
errors. This scenario uses the same three observation vectors as the second scenario, given by Eq. (84). We 
again simulate 1000 test cases, but with Gaussian white noise of one degree per axis on the first observation 
and 0.1 degrees per axis on the other two. The estimator, however, incorrectly assumes measurement errors 
of 0.1 degrees per axis on all three observations, so it weights the measurements equally. 

The minimum and maximum values of the loss function computed by the q method in the 1000 test runs 
were 0.07 and 453, respectively. The probability distribution of the loss function is plotted in Figure 3. The 
theoretical three-degree-of-freedom distribution is not plotted, since it would be a very poor fit to the data. 
More than 95% of the values of L(Aopt )  are theoretically expected to lie below 4, according to the 2  
distribution plotted in Figure 2, but almost half of the values of the loss function plotted in Figure 3 have 
values greater than 50. Shuster has emphasized that large values of the loss function are an excellent 
indication of measurement mismodeling or simply of bad data. 

The estimation errors for this scenario are presented in Table 3, which is similar to Tables 1 and 2 except 
that all the angular errors are given in degrees. The truly optimal q and SVD methods agree even more 
closely than in the other scenarios. In this scenario, the iterative computation of max works well, and both 
iterations improve the agreement of the loss function and attitude estimates with optimal values. The first 
order refinement is reflected in a reduction of the roll attitude errors, but no visible improvement in pitch 
and yaw. All the estimators with first-order updates give estimates equally good as those of the q and SVD 
methods, and the second order update to max provides no significant improvement. 

The three scenarios taken together show that the most robust, reliable, and accurate estimators are 
Davenport’s q method and the SVD method. This is not surprising, since these methods are based on robust 
and well-tested general-purpose matrix algorithms. The FOAM algorithm with one or more iterative 
refinements of max gives equally accurate results in these scenarios. It does not inspire the same level of 
confidence, though, because it is based on finding a matrix eigenvalue as a solution of the characteristic 
equation, an operation that is mathematically suspect. 

The other algorithms, QUEST, ESOQ, and ESOQ2, perform as well as the more robust algorithms when 
measurement weights do not vary too widely and are reasonably well modeled. This includes most of the 
cases for which vector observations are used to compute spacecraft attitude, in particular the case of an 
attitude solution from multiple stars. In such an application, the largest eigenvalue of the K matrix can 
either be approximated by 0 or else computed by a single Newton-Raphson iteration of the characteristic 
quartic polynomial. If the measurement uncertainties are not well represented by white noise, however, an 
update is required, and this update can lead to large errors if the measurement weights span a wide range. 

SPEED 

There are two caveats to make with regard to timing comparisons. First, absolute speed numbers are not 
very important for ground computations, since the actual estimation algorithm is only a small part of the 
overall attitude determination data processing effort. Absolute speed was more important in the past, when 
thousands of attitude solutions had to be computed by slower machines, which is why QUEST was so 
important for the MAGSAT mission. Second, the longest time required by a computation may be more 
important than the average time, since a real-time computer in a spacecraft attitude control system or a star 
tracker must finish all its required tasks in a limited time. For this reason, we present maximum execution 
times, which would appear to penalize QUEST for real-time applications, because of its use of sequential 
rotations. In order to identify the stars in its field of view, however, a star tracker must have a fairly good a 
priori attitude estimate, which can determine the optimal rotated coordinate frame for QUEST in a star 
tracker application. We will present timing for QUEST both with and without use of a priori information to 
eliminate sequential rotations. 
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Figure 3: Empirical Loss Function Distribution  
for the Mismodeled Measurement Weight Scenario 

Table 3: Estimation Errors for Mismodeled Measurement Weight Scenario 
RSS (max) estimated-to-optimal RSS (max) estimated-to-true Algorithm 

max iterations loss function x (deg) yz (deg) x (deg) yz (deg) 

q — — — — 0.93 (3.64) 0.476 (1.53) 

SVD — 4.0 (25)  10-10 3.7 (20)  10-12 2.4 (8.3)  10-14 0.93 (3.64) 0.476 (1.53) 

0 — 0.69 (6.2) 0.0038 (0.034)  1.15 (5.60) 0.476 (1.53) 

1 2.7 (57)  0.020 (0.54) 1.0 (22)  10-4 0.93 (3.65) 0.476 (1.53) 

 

QUEST 

2 0.0083 (0.43) 6.2 (414)  10-5 2.4 (108)  10-7 0.93 (3.64) 0.476 (1.53) 

0 — 0.69 (6.2) 0.0038 (0.034) 1.15 (5.60) 0.476 (1.53) 

1 2.7 (57)  0.020 (0.54) 1.0 (22)  10-4 0.93 (3.65) 0.476 (1.53) 

 

ESOQ 

2 0.0083 (0.43) 6.2 (414)  10-5 2.4 (108)  10-7 0.93 (3.64) 0.476 (1.53) 

0 — 0.69 (6.2) 0.0038 (0.034) 1.15 (5.60) 0.476 (1.53) 

1 2.7 (57) 0.020 (0.54) 1.0 (22)  10-4 0.93 (3.65) 0.476 (1.53) 

 

ESOQ2 

2 0.0083 (0.43) 6.2 (414)  10-5 2.4 (108)  10-7 0.93 (3.64) 0.476 (1.53) 

0 — 0.69 (6.2) 0.0038 (0.034) 1.15 (5.60) 0.476 (1.53) 

1 2.7 (57) 0.020 (0.54) 1.0 (22)  10-4 0.93 (3.65) 0.476 (1.53) 

 

FOAM 

2 0.0083 (0.43) 6.2 (414)  10-5 2.4 (108)  10-7 0.93 (3.64) 0.476 (1.53) 
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Figure 4: Execution Times for Estimation Algorithms 

Figure 4 shows the maximum number of MATLAB floating-point operations (flops) to compute an attitude 
using two to six reference vectors; the times to process more than six vectors follow the trends seen in the 
figure. The inputs for the timing tests are the nobs normalized reference and observation vector pairs and 
their nobs weights. One thousand test cases with random attitudes and random reference vectors with 
Gaussian measurement noise were simulated for each number of reference vectors. It is clear that the q 
method and the SVD method require significantly more computational effort than the other algorithms, as 
expected. The q method is more efficient than the SVD method, except in the least interesting two-
observation case. The line labeled QUEST plots the times for the QUEST algorithm with a priori input to 
eliminate the need for sequential rotations, and QUEST* denotes the algorithm without this information, so 
that the difference shows the maximum time required for sequential rotations. In these tests, QUEST, 
ESOQ, ESOQ2, and FOAM perform one Newton-Raphson iteration for max when processing more than 
two observations. All these algorithms except QUEST* use the exact quadratic expression for max rather 
than Newton-Raphson iteration in the two-observation case, accounting for the break in the lines at nobs = 3 
for these methods. QUEST* performs a Newton-Raphson iteration for any number of observations, since it 
uses the denominator of the update in Eq. (37) to test for sequential rotations. Figure 4 shows that QUEST 
is less efficient than FOAM when sequential rotations are required, even though times for the more robust 
FOAM algorithm include 13 flops to compute quaternion output, which is preferable to the nine-component 
attitude matrix37. For this reason, we only consider the version of QUEST that uses a priori information in 
the remaining speed comparisons. One conclusion from these tests is that QUEST, ESOQ, and ESOQ2 are 
the fastest algorithms, with nearly equal speeds. The relative speeds of these three algorithms can be seen 
more clearly in the next figure. 
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Figure 5: Execution Times for Fastest Estimation Algorithms  
The numbers in parentheses indicate the number of Newton-Raphson iterations 

Figure 5 compares the timing of QUEST, ESOQ, ESOQ2, and FOAM with one iteration for max and with 
the zeroth-order approximation 0, i.e. without any iteration. Additional iterations would cost only 11 flops 
each for any of these algorithms; the main computational cost is in computing the coefficients of the 
characteristic equation. FOAM is seen to be significantly slower than the other algorithms; in fact FOAM 
with the zeroth-order approximation for max is slower than the other methods with first order updates. 
Examination of Figure 5 also reveals that the additional cost of the max update in QUEST is significantly 
less than the cost for ESOQ or ESOQ2. This is because QUEST was designed to use some of the same 
computations in the eigenvalue update and the quaternion computation; ESOQ and ESOQ2 are penalized 
by using the QUEST update for max rather than updates specifically tailored to these algorithms. 

SUMMARY 

This paper has examined the most useful of algorithms that estimate spacecraft attitude from vector 
measurements by minimizing Wahba’s loss function. The most robust estimators are the q method and the 
Singular Value Decomposition (SVD) method, which incorporate well-tested and mathematically rigorous 
matrix algorithms. The q method, which computes the optimal quaternion as the eigenvector of a 
symmetric 4 4 matrix with the largest eigenvalue, is somewhat faster than the SVD method. Several 
algorithms are significantly less burdensome computationally than the q and SVD methods. These methods 
are less robust, since they solve the quartic characteristic polynomial equation for the maximum 
eigenvalue, a procedure that is potentially numerically unreliable.  



The most robust, but not the fastest, of these other algorithms is the Fast Optimal Attitude Matrix (FOAM) 
algorithm, which performed as well as the q and SVD methods in the tests carried out here. The fastest 
methods are the QUaternion ESTimator (QUEST) and EStimator of the Optimal Quaternion (ESOQ and 
ESOQ2) algorithms. These algorithms perform quite well when the measurement noise of the observations 
is well characterized and does not vary too widely from measurement to measurement. They may require 
Newton-Raphson iteration to solve the quartic characteristic polynomial equation, and this computation can 
produce large errors when measurements with greatly differing accuracies are combined.  

The examples in the paper show that these robustness concerns are only an issue when processing 
measurements with widely differing accuracies, which is not the case for star trackers that track multiple 
stars with comparable accuracies, the most common application of Wahba’s loss function. Thus the fastest 
algorithms, QUEST, ESOQ, and ESOQ2, are well suited to star tracker attitude determination applications. 
In general-purpose applications where weights may vary greatly or the measurement errors are poorly 
modeled as white noise, the more robust q method or FOAM may be preferred.  

REFERENCES 

1. Wahba, Grace, “A Least Squares Estimate of Spacecraft Attitude,” SIAM Review, Vol. 7, No. 3,  
July 1965, p. 409.  

2. Shuster, Malcolm D., “Maximum Likelihood Estimate of Spacecraft Attitude,”  
Journal of the Astronautical Sciences, Vol. 37, No. 1, January-March 1989, pp. 79–88. 

3. Horn, Roger A. and Charles R. Johnson, Matrix Analysis, Cambridge, UK,  
Cambridge University Press, 1985. 

4. Farrell, J. L. and J. C. Stuelpnagel, “A Least Squares Estimate of Spacecraft Attitude,”  
SIAM Review, Vol. 8, No. 3, July 1966, pp. 384-386.  

5. Wessner, R. H., ibid . 

6. Velman, J. R., ibid. 

7. Brock, J. E., ibid. 

8. Brock, John E., “Optimal Matrices Describing Linear Systems,” AIAA Journal, Vol. 6, No. 7,  
July 1968, pp. 1292-1296. 

9. Markley, F. Landis and Itzhack Y. Bar-Itzhack, “Unconstrained Optimal Transformation Matrix,” 
IEEE Transactions on Aerospace and Electronic Systems Vol. 34, No. 1, January 1998, pp. 338-340.  

10. Keat, J., “Analysis of Least-Squares Attitude Determination Routine DOAOP,”  
CSC Report CSC/TM-77/6034, February 1977. 

11. Lerner, Gerald M., “Three-Axis Attitude Determination,” in Spacecraft Attitude Determination and 
Control, ed. by James R. Wertz, Dordrecht, Holland, D. Reidel, 1978. 

12. Markley, F. Landis, “Parameterizations of the Attitude,” in Spacecraft Attitude Determination and 
Control, ed. by James R. Wertz, Dordrecht, Holland, D. Reidel, 1978. 

13. Shuster, Malcolm D., “A Survey of Attitude Representations,” Journal of the Astronautical Sciences, 
Vol. 41, No. 4, October-December 1993, pp. 439-517. 

14. Golub, Gene H. and Charles F. Van Loan, Matrix Computations, Baltimore, MD,  
The Johns Hopkins University Press, 1983. 

15.  Shuster, M. D. “Approximate Algorithms for Fast Optimal Attitude Computation,”  
AIAA Paper 78-1249, AIAA Guidance and Control Conference, Palo Alto, CA, August 7–9, 1978. 

16.  Shuster, M. D. and S. D. Oh, "Three-Axis Attitude Determination from Vector Observations,"  
Journal of Guidance and Control, Vol. 4, No. 1, January-February 1981, pp. 70-77. 

17. Shuster, Malcolm D. and Gregory A. Natanson, “Quaternion Computation from a Geometric Point of 
View,” Journal of the Astronautical Sciences, Vol. 41, No. 4, October-December 1993, pp. 545-556. 



18. Markley, F. Landis, “Attitude Determination Using Vector Observations and the Singular Value 
Decomposition,” AAS Paper 87-490, AAS/AIAA Astrodynamics Specialist Conference, Kalispell, MT, 
August 1987. 

19. Markley, F. Landis, “Attitude Determination Using Vector Observations and the Singular Value 
Decomposition,” Journal of the Astronautical Sciences, Vol. 36, No. 3, July-Sept. 1988, pp. 245-258. 

20. Markley, F. Landis, “Attitude Determination Using Vector Observations: a Fast Optimal Matrix 
Algorithm,” Flight Mechanics/Estimation Theory Symposium, Goddard Space Flight Center,       
Greenbelt, MD, May 1992, NASA Conference Publication 3186. 

21. Markley, F. Landis, “Attitude Determination Using Vector Observations: a Fast Optimal Matrix 
Algorithm,” Journal of the Astronautical Sciences, Vol. 41, No. 2, April-June 1993, pp. 261-280. 

22. Mortari, Daniele, “ESOQ: A Closed-Form Solution to the Wahba Problem,” Paper AAS 96-173, 
AAS/AIAA Space Flight Mechanics Meeting, Austin, TX, February 11–15, 1996. 

23. Mortari, Daniele, “ESOQ: A Closed-Form Solution to the Wahba Problem,”  
Journal of the Astronautical Sciences, Vol. 45, No.2 April-June 1997, pp. 195-204. 

24. Mortari, Daniele, “n-Dimensional Cross Product and its Application to Matrix Eigenanalysis,”  
Journal of Guidance, Control, and Dynamics, Vol. 20, No. 3, May-June 1997, pp. 509-515. 

25. Mortari, Daniele, “ESOQ2 Single-Point Algorithm for Fast Optimal Attitude Determination,”  
Paper AAS 97–167, AAS/AIAA Space Flight Mechanics Meeting, Huntsville, AL, February 10-12, 1997. 

26. Mortari, Daniele, “Second Estimator of the Optimal Quaternion,” Journal of Guidance, Control,  
and Dynamics (in press). 

27. Black, H. D. “A Passive System for Determining the Attitude of a Satellite,” AIAA Journal, Vol. 2, No. 
7, July 1964, pp. 1350-1351. 

28. Markley, F. Landis, “Attitude Determination Using Two Vector Measurements,” Flight Mechanics 
Symposium, Goddard Space Flight Center, Greenbelt, MD, May 1999, NASA Conference Publication 
NASA/CP-19989-209235, pp. 39-52. 

29. Shuster, Malcolm D., “A Simple Kalman Filter and Smoother for Spacecraft Attitude,”  
Journal of the Astronautical Sciences, Vol. 37, No. 1, January-March 1989, pp. 89–106. 

30. Bar-Itzhack, Itzhack Y., “REQUEST: A Recursive QUEST Algorithm for Sequential Attitude 
Determination,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 5, September-October 1996, 
pp. 1034–1038. 

31. Lefferts, E. J., F. L. Markley, and M. D. Shuster, “Kalman Filtering for Spacecraft Attitude 
Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 5, No. 5, Sept.-Oct. 1982, pp. 417-429. 

32. Reynolds, R. G., “Quaternion Parameterization and Global Attitude Estimation,”  
Flight Mechanics/Estimation Theory Symposium, Goddard Space Flight Center, Greenbelt, MD,  
May 1997, NASA Conference Publication 3345, pp. 347–355. 

33. Reynolds, R. G., “Quaternion Parameterization and a Simple Algorithm for Global Attitude 
Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 4, July-August 1998,  
pp. 669-671. 

34. Shuster, Malcolm D., private communication.  

35. Abramowitz, Milton, and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, 
Graphs, and Mathematical Tables, New York, NY, Dover Publications, Inc., 1965, Chapter 26.  

36. Deutschmann, J., “Comparison of Single Frame Attitude Determination Methods,” Goddard Space 
Flight Center Memo to Thomas H. Stengle, July 26, 1993. 

37. Markley, F. L., “New Quaternion Attitude Estimation Method,” Journal of Guidance, Control, and 
Dynamics, Vol. 17, No. 2, March-April 1994, pp. 407-409. 




