12.2 Three-Axis Attitude Determination

Gerald M. Lerner

Three-axis attitude determination, which is equivalent to the complete specifi-
cation of the attitude matrix, A, is accomplished either by an extension of the
geometric techniques described in Chapter 11 or by a direct application of the
concept of attitude as a rotation matrix. If the spacecraft has a preferred axis, such



12.2 THREE-AXIS ATTITUDE DETERMINATION 421

as the angular momentum vector of a spinning spacecraft or the boresight of a
payload sensor, it is usually convenient to specify three-axis attitude in terms of the
attitude of the preferred axis plus a phase angle about that axis. This asymmetric
treatment of the attitude angles is usually justified by the attitude sensor configura-
tion and the attitude accuracy requirements, which are generally more severe for
the preferred axis. We refer to this method as geometric three-axis attitude de-
termination because the phase angle is computed most conveniently using spherical
trigonometry. Alternatively, in the algebraic method, the attitude matrix is deter-
mined directly from two vector observations without resorting to any angular
representation. Finally, the ¢ merhod provides a means for computing an optimal
three-axis attitude from many vector observations. In this section we describe these
methods for the computation of three-axis attitude.

12.2.1 Geometric Method

The geometric method is normally used when there is a body axis—such as the
spin axis of a momentum wheel, a wheel-mounted sensor, or the spacecraft itself,
about which there is preferential attitude data. Either deterministic techniques, as
described in Chapter 11, or differential correction techniques, as will be described
in Chapter 13, may be used to compute the attitude of the preferred axis. The
phase angle about the preferred axis is then computed from any measurement
which provides an angle about that axis.

In many cases, the geometric method is required because the sensor mea-
surements themselves (e.g., spinning Sun sensors or horizon scanners) define a
preferred spacecraft axis and provide only poor azimuthal information about that
axis. ' _

Figure 12-5 illustrates_the geometric method. The reference axes are the
celestial coordinates axes, X,, Y,, and Z,. We wish to compute the 3-1-3 Euler
angles, ¢, 8, and {, which define the transformation from the celestial to the body
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coordinates, 5(,,, ?B, and ZB. The Euler angles ¢ and 4 are related to the attitude
(a,8) of the preferred body axis, Z,, by

$=90°+a (12-252)
§=90°—8 (12-25b)

where the right ascension, a, and the declination, 8, are obtained by using any
one-axis attitude determination method. ¢ defines the orientation of the node, N.
The phase angle, y, is computed from the azimuth, yg, of the projection of a
measured vector, S (e.g., the Sun or magnetic field) on the plane normal to Z,. Let
M be the projection of S on the plane normal to Z, and P= Z, xN. Application of
Napier’s rules (Appendix A) to the right sphencal triangles SMN and SMP yields

N-S=M-S cosy, (12-26a)
P-S=M-S cos(90° — yo)=M-S siny, (12-26b)
which may be rewritten as*
tanyo=P-S/N-S (12-27)
where
N=(cos¢,sind,0)" (12-28a)
i’=(—Cos()sin4>,c050cos¢,sin0)T (12-28b)

The phase angle, ¥, is then given by
Y=yYo+ s (12-29)

As a more complex example of the geometric technique, we consider the
three-axis attitude determination for the CTS spacecraft during attitude acquisition
as illustrated in Fig. 12-6. The spacecraft Z axis is along the sunline and the
spacecraft Y axis (the spin axis of a momentum wheel) is fixed in inertial space on
a great circle 90 deg from the Sun. An infrared Earth horizon sensor has its
boresight along the spacecraft Z axis and measures both the rotation angle, 2,
from the Sun to the nadir about the spacecraft ¥ axis and the nadir angle, 7, from
the spacecraft Y axis to the Earth’s center. We wish to compute the rotation angle,
&b, about the sunline required to place the spacecraft Y axis into the celestial X-Y
plane as a function of the following angles: the Sun declination in celestial
coordinates, 8g; the clock anglet or difference between the Earth and Sun azimuth
in celestial coordinates, Aa = &, — ag; and either measurement £, or 7. As shown
in Fig. 12-6, @ is 180 deg minus the sum of three angles:

®s=180°— (L YSR+A+®p) (12-30)

*Note that M-S > 0 by the definition of M. If M-8§=0, y, is indeterminate because § provides no
phase inform. “on about ZB 1FM-§>0, \po is obtained unambiguously because the quadran’s of both
sinyg and cosyy, are known.

t For the synchronous CTS orbit, the azimuthal difference or clock angle is zero at local midnight and
decreases hv 15 d'é:')nﬁé;,f
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Fig. 12-6. Attitude Determination Geometry for CTS

Applying Napier’s rules to the right sphe
the arc length SE is

y=arccos(S-E)=arcco

and the rotation angle, A, is

rical triangles ETS, ERS, and QTS,

s(cosdgcosAa) (12-31)

A=/ RSE=arcsin(sin 8 /siny) (12-32)

where 8, =7 —90° and the arc length, TQ, is 9
triangle, QFS, is solved for the angle £SQ:

0 deg. Next, the quadrantal spherical

b=/ ESQ=arccos(cos(90° —Aa)/siny) (12-33)
Combining Egs. (12-30), (12-32), and (12-33) with £ YSR =90 deg gives the result
® ¢ =90° —arcsin(sin B /siny) — arc cos(sin Aa /siny) (12-34)
or
® =arccos(sinfB;/siny)—arccos(sinAa /siny) (12-35)
where

siny = (cos?Aa sin®; +sinAa)'”? (12-36)

Finally, £, and @, are related through the quadrantal spherical triangle, YSE, by

B¢ =arccos(cosdg cos

One problem with the geometric method
inverse trigonometric functions in Egs. (12-31)

Aa/cosflp) (12-37)

is apparent from the proliferation of
to (12-37), which results in quadrant
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and consequent attitude ambiguities. Ambiguity is a frequent problem when
dealing with inverse trigonometric functions and must be carefully considered in
mission analysis. Although from Fig. 12-6, ®¢ and all the rotation angles in Eq.
(12-30) are in the first quadrant by inspection, the generalization of Eq. (12-35) for
arbitrary angles is not apparent. From the form of Eq. (12-35), it would appear that
there is a fourfold ambiguity in ®g; however, some of these ambiguities may be
resolved by applying the rules for quadrant specification given in Appendix A.
There is, however, a true ambiguity in the sign of A which may be seen by
redrawing Fig. 12-6 for s~ ~70 deg and noting that, in this case,

O =180°~ (L YSR—A+®,) (12-38)

The ambiguity between Egs. (12-30) and (12-38) is real if only pitch or roil
measurements are available and must be differentiated from apparent ambiguities
which may be resolved by proper use of the spherical triangle relations. However, if
both @, and n measurements are available, the ambiguity may be resolved by the
sign of @, because £ is positive for Eq. (12-30) and negative for Eq. (12-38). -

12.2.2 Algebraic Method

The algebraic method is based on the rotation matrix representation of the
attitude. Any two vectors, u and v, define an orthogonal coordinate system with the
basis vectors, §, t, and § given by

q=i (12-39a)
=iV /| XV (12-39b)
§=gxi (12-39¢)

provided that @1 and ¥ are not parallel, i.e.,
[a-¥|<1 (12-40)

At a given time, two measured vectors in the spacecraft body coordinates
(denoted by the subscript B) i1, and V4, determine the body matrix, My:

MB"‘[QB ;i'B Egu] (12-41)

For example, the measured vectors may be the Sun position from two-axis Sun
sensor data, an identified star position from a star tracker, the nadir vector from an
infrared horizon scanner, or the Earth’s magnetic field vector from a mag-
netometer. These vectors may also be obtained in an appropriate reference frame
(denoted by the subscript R) from an ephemeris, a star catalog, and a magnetic
field model. The reference matrix, M, is constructed from i, and ¥4 by

MR=[flR Ei'R fgk] (12-42)

As defined in Section 12.1, the attitude matrix, or direction cosine matrix, A, is
given by the coordinate transformation,

AM=M, (12-43)
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because it carries the column vectors of My into the column vectors of M. This
equation may be solved for 4 to give

A=MgMg' (12-44)
Because M, is orthogonal, My '= M, and, hence (see Appendix C),
A=M M} (12-45)

Nothing in the development thus far has limited the choice of the reference
frame or the form of the attitude matrix. The only requirement is that M, possess
an inverse, which follows because the vectors q, ¥, and § are linearly independent
provided that Eq. (12-40) holds. The simplicity of Eq. (12-45) makes it particularly
attractive for onboard processing. Note that inverse trigonometric functions are not
required; a unique, unambiguous attitude is obtained; and computational re-
quirements are minimal.

The preferential treatment of the vector ot over v in Eq. (12-39) suggests that @
should be the more accurate measurement;* this ensures that the attitude matrix
transforms i from the reference frame to the body frame exactly and ¥ is used only
to determine the phase angle about @i. The four measured angles that are required
to specify the two basis vectors are used to compute the attitude matrix which is
parameterized by only three independent angles. Thus, some information is im-
plicitly discarded by the algebraic method. The discarded quantity is the measured
component of ¥ parallel to @, i.e., i;- V5. This measurement is coordinate indepen-
dent, equals the known scalar @i4-V,, and is therefore useful for data validation as
described in Section 9.3. All of the error in i,V is assigned to the less accurate
measurement ¥4, which accounts for the lost information.

Three reference coordinate systems are commonly used: celestial, ecliptic, and
orbital (see Section 3.2). The celestial reference system, M, is particularly con-
venient because it is obtained directly from standard ephemeris and magnetic field
model subroutines such as EPHEMX and MAGFLD in Section 20.3. An ecliptic
reference system, M, defined by the Earth-to-Sun vector, S, and the ecliptic north
pole, P, is obtained by the transformation

A - N ” T
My =[S iP,xS:P;] M, (12-46)
where S and i’E are in celestial coordinates,
P, ~(0, —sine, cose)T (12-47)

and e~23.44 deg 1s the obliquity of the ecliptic. R
An orbital reference system, M, is defined by the nadir vector, E, and the
negative orbit normal, —i, in celestial coordinates,

- ~ T
Mo=[-RXE:-d E] M. (12-48)

*If both measurements are of comparable accuracy, basis vectors constructed from d+V and G-V
would provide the advantage of symmetry.



426 THREE-AXIS ATTITUDE DETERMINATION METHODS 12.2

Any convenient representation may be used to parameterize the attitude
matrix. Quaternions and various Euler angle sequences are commonly used as
described in the previous section.

The construction of vector measurements from sensor data is generally
straightforward, particularly for magnetometers (Section 7.5), Sun sensors (Section
7.1), and star sensors (Section 7.6). For Earth-oriented spacecraft using horizon
scanners, the nadir vector may be derived from the measured quantities by
reference to the orbital coordinate system defined in Fig. 12-7. The Z,, axis is along
the nadir vector and the Y, axis is along the negative orbit normal. The scanner
measures both (1) the pitch angle, 2, about the scanner axis (the spacecraft Y axis,
Y,) from the spacecraft Z axis, Z,, to the Y Z, plane, and (2) 3., the angle from
the scanner axis to the nadir minus 90 deg.*

000}

90°

20*

Be

T )
INADIR}

Fig. 12-7. Three-Axis Attitude From IR Scanner Plus Sun Sensor Data

Solving the quadrantal spherical triangles, XgYgZ, and YgZgZ,, gives
Z,Z,=cos§pcos By (12-49)
X2, =sinQcos B (12-50)
Hence, the nadir vector in body coordinates is
E, =(sinQ, cos B, —sin B, cos 2, cos Bz )T (12-51)
12.2.3 g Method
A major disadvantage of the attitude determination methods described thus

far is that they are basically ad hoc. That is, the measurements are combined to
provide an attitude estimate but the combination is not optimal in any statistical

* The angles {2, and B are analogous to pitch and roll, respectively, as they are defined in Chapter 2.
Because standard definitions of pitch, roll, and yaw do not exist, the sign of the quantities here may
differ from that used on some spacecraft. (See Section 2.2.)
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sense. Furthermore, the methods are not easily applied to star trackers or combina-
tions of sensors which provide many simultaneous vector measurements. Given a
set of n > 2 vector measurements, @, in the body system, one choice for an optimal
attitude matrix, 4, is that which minimizes the loss function

n

J(A)= 2 wilg— A (12-52)

i=1
where w;, is the weight of the ith vector measurement and ii%; is the vector in the
reference coordinate system. The loss function is the weighted sum squared of the
difference between the measured and transformed vectors.

The attitude matrix may be computed by an elegant algorithm derived by
Davenport [1968] and based in part on earlier work by Wahba [1965] and
Stuelpnagel [1966]. This algorithm was used for the HEAO-1 attitude determina-
tion system [Keat, 1977].

The loss function may be rewritten as

J(A)=—2 2 W,AV,+constant terms (12-53)

=1
where the unnormalized vectors W, and V, are defined as
W, =yw, @ty V,=yw i (12-54)

The loss function J(A) is clearly a minimum when

J'(A)= 2 WAV =tr(WTAV) (12-55)

i=1

is a maximum, where the (3Xn) matrices W and V are defined by
W=[W, TW, 1 ‘W, ]
V:—_'[Vl Ve gvn] (12-56)

To find the attitude matrix, A, which maximizes Eq. (12-55), we parameterize
A in terms of the quaternion, ¢, Eq. (12-13b),

A(9)=(g9i—a-q)1+2qq" - 24,0 (12-57)
where the quaternion has been written in terms of its vector and scalar parts,
q
q=(q4) (12-58)

1 is the (3 X 3) identity matrix, qq" is the (3 X3) matrix outer product formed from
the vector part of ¢, and @ is the skew-symmetric matrix

0 —q3 92
9= ¢ 0 —gq (12-59)
2 9 0
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Substitution of Eq. (12-57) into (12-55) and considerable matrix algebra [Keat,
1977] yields the following convenient form for the modified loss function:

J'(9)=q"Kq (12-60)
where the (4X4) matrix K is
S-16 Z )
K= 12-61
( ZT o ( )

and the intermediate (3 X 3) matrices B and S, the vector Z, and the scalar o are
given by

B=wyT (12-62a)
S=B"+B (12-62b)
Z=(By~ By, Byy— Byy, By~ By)' (12-62c)
o=tr(B) (12-62d)

The extrema of J', subject to the normalization constraint ¢'g =1, can be found by
the method of Lagrange multipliers [Hildebrand, 1964]. We define a new function

g(9)=q"Kqg—2Ng'q (12-63)

where A is the Lagrange multiplier, g(¢) is maximized without constraint, and A is
chosen to satisfy the normalization constraint. Differentiating Eq. (12-63) with
respect to ¢' and setting the result equal to zero, we obtain the eigenvector
equation (see Appendix C)

Kqg=A\q (12-64)

Thus, the quaternion which parameterizes the optimal attitude matrix, in the
sense of Eq. (12-52), is an eigenvector of K. Substitution of Eq. (12-64) into (12-60)
gives

J'(q)=q"Kg=q"Aq=A\ (12-65)

Hence, /' is a maximum if the eigenvector corresponding to the largest eigenvalue
is chosen. It can be shown that if at least two of the vectors W, are not collinear,
the eigenvalues of K are distinct [Keat, 1977] and therefore this procedure yields an
unambiguous quaternion or, equivalently, three-axis attitude. Any convenient
means, e.g., use of the subroutine EIGRS [IMSL, 1975], may be used to find the
eigenvectors of K.

A major disadvantage of the method is that it requires constructing vector
measurements, which is not always possible, and weighting the entire vector.
Alternative, optimal methods which avoid these disadvantages are described in
Chapter 13. Variations on the g-method which avoid the necessity for computing
eigenvectors are described by Shuster [1978a, 1978b].
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